Hierarchical changes in protein structure: from surface influence to cell control

Sapun H. Parekh

Department of Biomedical Engineering, University of Texas at Austin, Austin, TX USA

Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany

Protein structure, not just identity, is now appreciated as a critical variable that determines downstream biochemical reactivity. In biomaterials research, proteins are often coated onto materials to make them biocompatible; however, the structure of particular proteins on the material surface is often unknown or not taken into account, leading to inconsistent biological responses. The same protein on different biomaterial surfaces can take on distinct structures that can, for example, lead to differential receptor activation or stem cell differentiation into specific lineages. In this work, we demonstrate how both chemical and physical stimuli modulate protein structure and ultimately direct cell response. In the first part of this talk, I will show how graphene materials, with their unique physico-chemical properties and potential applications in tissue engineering, can strongly modulate fibronectin structure, cellular integrin binding, and stem cell differentiation. In the second part, I will show how physical forces on protein-based fibrin hydrogels can modulate protein structure, modifying enzymatic and integrin binding sites and drastically reducing platelet adhesion. The work presented here shows that physical and chemical properties of materials strongly influence protein structure and downstream biological responses, showing that biomaterial design should include considerations to control protein structure in addition to protein capture.