
Wednesday Morning, October 23, 2019 

Wednesday Morning, October 23, 2019 1 8:00 AM 

Electronic Materials and Photonics Division 
Room A214 - Session EM+2D+AS+MI+MN+NS+TF-WeM 

Nanostructures and Nanocharacterization of Electronic and 
Photonic Devices 
Moderators: Sang M. Han, University of New Mexico, Jason Kawasaki, 
University of Wisconsin - Madison 

8:00am EM+2D+AS+MI+MN+NS+TF-WeM-1 Photonic Thermal Conduction 
in Semiconductor Nanowires, E Tervo, M Gustafson, Z Zhang, B Cola, 
Michael A. Filler, Georgia Institute of Technology 

We present a practical material system—chains of infrared plasmonic 
resonators situated along the length of semiconductor nanowires—where 
near-field electromagnetic coupling between neighboring resonators 
enables photonic thermal transport comparable to the electronic and 
phononic contributions. We model the thermal conductivity of Si and InAs 
nanowires as a function of nanowire diameter, resonator length, aspect 
ratio, and separation distance by combining discrete dipolar approximation 
calculations, to determine the relevant dispersion relations, with thermal 
kinetic theory. We show that photonic thermal conductivities exceeding 1 
W m-1 K-1 are possible for 10 nm diameter Si and InAs nanowires containing 
repeated resonators at 500 K, more than an order of magnitude higher 
than existing materials systems and on par with that possible with phonons 
and electrons. These results highlight the potential for photons in properly 
engineered solids to carry significant quantities of heat and suggest new 
ways to dynamic control thermal conductivity. 

8:20am EM+2D+AS+MI+MN+NS+TF-WeM-2 Electric Field-Induced Defect 
Migration and Dielectric Breakdown in ZnO Nanowires, Hantian Gao, M 
Haseman, Department of Physics, The Ohio State University; H von 
Wenckstern, M Grundmann, Universität Leipzig, Felix-Bloch-Institut für 
Festkörperphysik; L Brillson, The Ohio State University 

Nanowires of the II-VI compound semiconductor ZnO have generated 
considerable interest for next generation opto- and microelectronics . 
Central to nanowire electronics is understanding and controlling native 
point defects, which can move1 and lead to dielectric breakdown under 
applied electric fields. We used nanoscale lateral and depth-resolved 
cathodoluminescence spectroscopy (DRCLS) with hyperspectral imaging 
(HSI) in a scanning electron microscope (SEM) to observe defect migration 
and redistribution directly under applied electric fields and after dielectric 
breakdown. HSI maps represent lateral intensity distributions of specific 
features acquired pixel by pixel across SEM-scanned areas and normalized 
to near band edge (NBE) emissions. A pulsed layer deposited (PLD) ZnO 
microwire (3 μm diameter) exhibited homogeneous distributions of 
common luminescence features at 2.0 eV (VZn cluster) and 2.35 eV (CuZn) as 
well as 2.7 and 2.9 eV (VZn) peaks near the wire surface. With increasing 
electrical bias up to 3x105 V/cm between two Pt contacts, these defects 
systematically redistribute, even at room temperature, moving toward and 
under one of the contacts, draining the “bulk” nanowire, especially its 
near-surface region. Since ionized VZn-related and CuZn antisite defects are 
acceptors, their removal reduces the compensation of electron density in 
the typically n-type ZnO and thus its resistivity. 

Besides HSI lateral maps, DRCLS vs. incident beam energy yields depth 
profiles radially of defects at specific locations along the nanowire. These 
exhibit high near-surface and wire core densities that biasing reduces. 
Current voltage measurements with increasing field gradients show a 
gradual resistivity decrease until an abrupt dielectric breakdown of the 
microwire at 300 kV/cm (150 V/5 μm). The acceptor removal between the 
contacts and their accumulation under one of the contacts can both 
contribute to this breakdown due to the decrease in resistivity and higher 
current conduction between the contacts and possible defect-assisted 
tunneling2 across the increased defect density under the contact, 
respectively. These electric field-induced defect movements may be of 
more general significance in understanding dielectric breakdown 
mechanism not only in ZnO nanostructures but also bulk semiconductors in 
general. 

HG, MH, and LJB gratefully acknowledge support from AFOSR Grant No. 
FA9550-18-1-0066 (A. Sayir). HVW and MG acknowledge Deutsche 
Forschungsgemeinschaft (Gr 1011/26- 1). 

1. G. M. Foster, et al., Appl. Phys. Lett. 111, 101604 (2017). 

2. J.W.Cox, et al., Nano Lett, 18, 6974 (2018). 

8:40am EM+2D+AS+MI+MN+NS+TF-WeM-3 Characterization of SiGe/Si 
Multilayer FIN Structures using X-Ray Diffraction Reciprocal Space Maps, 
Roopa Gowda, M Korde, SUNY Polytechnic Institute; M Wormington, 
Jordan Valley Semiconductors Inc.; A Diebold, SUNY Polytechnic Institute 

Nanowire and Nanosheet FET’s are potential replacements for FinFET’s, 
mainly beyond sub-10nm CMOS technology nodes, as gate-all-around 
(GAA) FET device architecture provides improved electrostatics in higher on 
current (I on) and better subthreshold swing. As GAA is one of the best 
promising device for logic applications for future technology nodes, there is 
an increased need of characterization technique for such multilayer Si1-

xGex/ Si complex structures. We studied Si1-xGex/Si/Si1-xGex/Si/Si1-

xGex/Simultilayer FIN structures using X-Ray Diffraction Reciprocal Space 
Maps (RSM). RSM is one of the most popular technique to study epitaxial 
thin-films nanostructures due to straightforward analysis of the data. We 
found RSM simulations showing sensitivity of nanosheet fin structures 
dimensions such as pitch-walk (PW), Nanosheet thickness (NST), 
composition and shape. RSM’s provide better means to interpret more 
complex diffraction measurements than real space constructions. RSMs of 
Si1-xGex/Si multilayer structure has been simulated using Bruker JV-RADS 
v6.5.50/HRXRD software. 1D line profiles extracted from RSMs was also 
used for the analysis of nanostructures dimensions. We obtained 
multilayer structure dimensions from the published information. We 
studied the influence of nanostructure parameters PW, NST, Composition 
and shape on RSMs. Imperfect periodic structures impact the intensity 
modulation of the grating rods (GRs). We observed that satellite peaks 
intensity reduces and harmonics peaks intensity enhances as PW increases. 
Rate of intensity change in higher order peaks is much faster than the 
lower harmonic peaks. We observed that the spacing between adjacent 
interference fringes in RSMs is related to the thickness of the layers. The 
period of fringes is inversely proportional to the thickness of the layer, 
hence total FIN height can be determined. 1D line profiles along Qz shows 
decreased angular width and increase in intensity of the layer peak and 
interference fringes as NST increases. Symmetric 004 longitudinal RSMs 
and their line profiles clearly show layer peak shift from substrate peak as 
composition increases due to increase of SiGe lattice spacing along the 
growth direction. Cross-shaped GR pattern in RSMs is observed which is 
due to trapezoidal surface grating caused by SWA. Line profiles indicate 
that fin shapes influence the modulation of the GRs as a function of Qx. We 
demonstrate the characterization of complex Si1-xGex/ Si multilayers using 
RSMs and their line profiles which are relevant for lateral nanowire and 
nanosheet FETs. Above findings from RSM simulations clearly indicate the 
influence of variations in structural dimensions. 

9:00am EM+2D+AS+MI+MN+NS+TF-WeM-4 Nanoscale Depth and 
Lithiation Dependence of V2O5 Band Structure by Cathodoluminescence 
Spectroscopy, Mitchell Walker, N Pronin, The Ohio State University; A 
Jarry, J Ballard, G Rubloff, University of Maryland, College Park; L Brillson, 
The Ohio State University 

Vanadium pentoxide (V2O5) has attracted considerable interest for its 
potential use as a cathode for solid state lithium ion batteries. While 
researchers have studied the V2O5 lithiation charge/discharge cycle for over 
two decades, we are only now able to measure directly its electronic band 
structure from the surface to the thin film bulk and its changes with Li 
intercalation on a near-nanometer scale. We used depth-resolved 
cathodoluminescence spectroscopy (DRCLS) to monitor the changes in 
electronic structure from the free surface to the thin film bulk several 
hundred nm below. DRCLS measures optical transitions at 1.8-2, 3.1-3.2, 
3.6-3.7, 4.0-4.1, and 4.6-4.7 eV between multiple conduction bands to the 
pristine (α) V2O5 valence band maximum in excellent agreement with V3dt2g 
conduction band densities of states (DOS) predicted by density functional 
theory (DFT).1 Triplet conduction band states at 1.8, 1.9, and 2 eV 
correspond to predicted V 3dxy–Oc 2px/2py hybridized states resulting from 
strong deviations of the unit cell VO6 octahedra from cubic coordination 
correspond to optical absorption edges along the 3 crystallographic axes. 
With excitation depth increasing from < 10 to 125 nm calibrated by Monte 
Carlo simulations, the relative amplitudes and energies of these states 
change, signifying gradual changes in octahedral distortion. The band 
structure changes significantly with Li intercalation into LixV2O5 for x = 0, 1, 
and 2. Lithiation gradually removes the hybridized band and introduces a 
2.4-2.7 eV V3d t2g band extending 50 nm (x=1) or 25 nm (x=2) into the 
surface. Higher (4.0 and 4.4 eV) features possibly related to a secondary 
phase dominate the spectra deep inside all V2O5 films near the battery 
electrode. Delithiation reintroduces the 1.8-2 eV split-off band although 
significantly narrowed by octahedral distortions. Overall, DRCLS shows that 
the lithiation cycle alters the V2O5 band structure on a scale of 10-100’s of 
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nm with lithiation. The direct measure of V2O5’s electronic band structure 
as a function of lithiation level provided by DRCLS can help guide future 
battery engineering work as more efficient lithium ion batteries are 
developed. In particular, these unique electrode measurements may reveal 
in what ways lithiation changes V2O5 irreversibly, as well as reveal 
methods to extend solid state battery life. MW and LJB acknowledge 
support from NSF grant DMR-18-00130. AJ and GR acknowledge 
Nanostructures for Electrical Energy Storage (NEES), a Department of 
Energy Office of Science Frontier Research Center. 

1. V. Eyert and K.-H. Höck, “Electronic structure of V2O5: Role of octahedral 
deformation,” Phys. Rev. B 57, 12727 (1998). 

9:20am EM+2D+AS+MI+MN+NS+TF-WeM-5 Electron Microscopy of 
Quantum Materials: From Learning Physics to Atomic Manipulation, 
Sergei Kalinin, Oak Ridge National Laboratory INVITED 

Atomically-resolved imaging of materials has become the mainstay of 
modern materials science, as enabled by advent of aberration corrected 
scanning transmission electron microscopy (STEM). In this talk, I will 
present the new opportunities enabled by physics-informed big data and 
machine learning technologies to extract physical information from static 
and dynamic STEM images. The deep learning models trained on 
theoretically simulated images or labeled library data demonstrate 
extremely high efficiency in extracting atomic coordinates and trajectories, 
converting massive volumes of statistical and dynamic data into structural 
descriptors. I further present a method to take advantage of atomic-scale 
observations of chemical and structural fluctuations and use them to build 
a generative model (including near-neghbour interactions) that can be used 
to predict the phase diagram of the system in a finite temperature and 
composition space. Similar approach is applied to probe the kinetics of 
solid-state reactions on a single defect level and defect formation in solids 
via atomic-scale observations. Finally, synergy of deep learning image 
analytics and real-time feedback further allows harnessing beam-induced 
atomic and bond dynamics to enable direct atom-by-atom fabrication. 
Examples of direct atomic motion over mesoscopic distances, engineered 
doping at selected lattice site, and assembly of multiatomic structures will 
be demonstrated. These advances position STEM towards transition from 
purely imaging tool for atomic-scale laboratory of electronic, phonon, and 
quantum phenomena in atomically-engineered structures. 

11:00am EM+2D+AS+MI+MN+NS+TF-WeM-10 Hot Electron Emission from 
Waveguide Integrated Graphene, Ragib Ahsan, F Rezaeifar, H Chae, R 
Kapadia, University of Southern California 

From free electron laser sources to electronic structure measurements, 
electron emission devices play an important role in a wide range of areas. 
Photoemission is one of the basic processes exploited in modern electron 
emission devices. However, higher-order processes like multiphoton 
absorption or optical field induced emission are necessary for efficient 
photoemission from high workfunction metallic emitters. Our work 
demonstrates a graphene emitter integrated on a waveguide that can 
evanescently couple with the photons delivered from a CW laser (405 nm) 
and registers photoemission at a peak power that is orders of magnitude 
lower than previously published results based on multiphoton and optical 
field induced emission processes. Coupling FDTD analysis of the waveguide 
to a rigorous quantum mechanical study of the scattering mechanisms and 
the tunneling processes in graphene, we have been able to model the 
emission current from the graphene emitter with good agreement to the 
experimental data. Our investigation reveals that the photoexcited 
electrons can go through three mutually competitive processes: (i) 
electron-electron scattering (ii) electron-phonon scattering and (iii) directly 
emission into the vacuum. Absorption of a photon causes a reduction in 
the tunnel barrier seen by the electron and the emission rate increases 
exponentially. Integration of graphene to the waveguide enables 
evanescent coupling between electrons and the photons causing almost 
100% absorption of the photons. Our integrated photonics approach 
demonstrates an emission efficiency that is three orders of magnitude 
greater than free space excitation. These results suggest that integrating 
photonic elements with low dimensional materials such as 2D materials, 
nanoparticles, quantum dots, etc. can provide a new domain of efficient 
electron emission devices and integrated photonics. 

11:20am EM+2D+AS+MI+MN+NS+TF-WeM-11 Imaging Candidate 
Nanoelectronic Materials with Photoemission Electron Microscopy 
(PEEM), Sujitra Pookpanratana, S Robey, National Institute of Standards 
and Technology (NIST); T Ohta, Sandia National Laboratories 

The drive to produce smaller and lower power electronic components for 
computing is pushing the semiconductor industry to consider novel 

nanoscale device structures, not based solely on crystalline silicon. 
Continued innovation and progress towards novel nanoelectronic materials 
and devices in turn requires metrologies sensitive to electronic properties 
at these length scales. Tip-based imaging techniques provide electronic 
contrast with sub-nanometer resolution, however it is a local, scanning-
based technique. Photoemission (or photoelectron spectroscopy) is the 
dominant technique to provide detailed electronic band structure 
information- level energies, dispersion, polarization dependence, etc. – but 
typically requires materials with millimeter, or larger, length scales. 
Photoemission electron microscopy (PEEM) can be employed to allow 
access to this vital information, providing full-field imaging capabilities 
sensitive to a variety of electronic contrast mechanisms at 10’s of 
nanometers length scales. Here, we will present our results on imaging the 
impact of molecular dopants on multilayer tungsten disulfide (WS2) 
employing the PEEM at the Center for Integrated Nanotechnologies within 
Sandia National Laboratories. We will also discuss the commissioning of a 
recently installed PEEM to perform complementary measurements at NIST-
Gaithersburg. 

Technological commercialization of transition metal dichalcogenides 
(TMDs) in nanoelectronics devices requires control of their electronic 
properties, such as charge carrier type and density, for specific device 
functionality. Conventional techniques for doping are problematic for 
atomically thin 2D materials. The sensitivity of mono- to few-layer (TMDs) 
to their local environment and interfaces can be employed via surface 
doping of molecules on TMDs to provide a promising route toward 
controllable doping. Investigations of surface doping for one to few layer 
WS2 were performed using mechanically exfoliated WS2 on a SiO2/Si 
substrate that was then exposed to tris(4-bromophenyl)ammoniumyl 
hexachloroantimonate, a p-dopant molecule. PEEM was performed before 
and after p-dopant exposure. After doping, we find that the contrast of the 
surface WS2 physical features change and valence band edge shifts about 
0.8 eV away from the Fermi energy, consistent with p-doping. We will 
discuss the effects of molecular doping in terms of homogeneity and 
surface features across multiple WS2 flakes. Lastly, we will discuss 
commissioning of a new PEEM instrument installed at NIST in 2019, using 
results of graphene to demonstrate imaging capability and energy 
resolution of this instrument. 

11:40am EM+2D+AS+MI+MN+NS+TF-WeM-12 Comparison of Features for 
Au and Ir Adsorbed on the Ge (110) Surface, Shirley Chiang, University of 
California, Davis; R Xie, H Xing, Donghua University, China; T Rahman, 
University of Central Florida; C Fong, University of California, Davis 

Two ad-atoms of Au and Ir adsorbed, respectively, on the Ge(110) surface 
are studied by a first-principles algorithm based on density functional 
theory. The surface is modeled by a slab consisting of 108 Ge atoms with a 
10 Å vacuum region. Hydrogen atoms are used to saturate the dangling 
orbitals at the other side of the vacuum region. Two cases of Au adsorption 
and one case of Ir are reported. The case of Ir has a large binding energy 
because of its small atomic size compared with the Ge atom, and the 
partially filled d-states. The total energy for each case is given, as are the 
energies for removing one ad-atom at a time and also both ad-atoms. The 
binding energy of each case is obtained by simply taking the energy 
difference between these configurations; this method is more realistic 
because the experimental data measured by LEEM and STM indicate that 
the collective motions of the ad-atoms do not allow the surface to relax to 
its equilibrium state.[1] For a large separation in the case of two Au atoms, 
there is a smaller binding energy than for one ad-atom. This can relate to 
the fact that the collective motions seen experimentally do not happen at a 
full monolayer coverage of ad-atoms.[1] Additional comparisons will be 
made to an atomic model for Ir/Ge(111) from STM measurements.[2] 

[1] B. H. Stenger et al., Ultramicroscopy, 183, 72 (2017). 

[2] M. van Zijll et al., Surf. Sci. 666, 90, (2017). 

Support from NSF DMR-1710748 (SC, CYF); NSF DMR-1710306 (TSR); 
National Natural Science Foundation of China Grants 61376102, 11174048 
and computational support from Shanghai Supercomputer Center (RKX, 
HZX). 
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12:00pm EM+2D+AS+MI+MN+NS+TF-WeM-13 Reference Materials for 
Localization Microscopy, C Copeland, R Dixson, L Elliott, B Ilic, National 
Institute for Science and Technology (NIST); D Kozak, K Liao, FDA, National 
Institute for Science and Technology (NIST); J Liddle, NIST Center for 
Nanoscale Science and Technology; A Madison, National Institute for 
Science and Technology (NIST); J Myung, FDA; A Pintar, Samuel Stavis, 
National Institute for Science and Technology (NIST) 

As the diffraction limit fades away into the history of optical microscopy, 
new challenges are emerging in super-resolution measurements of diverse 
systems ranging from catalysts to therapeutics. In particular, due to 
common limitations of reference materials and microscope calibrations, 
many localization measurements are precise but not accurate. This can 
result in gross overconfidence in measurement results with statistical 
uncertainties that are apparently impressive but potentially meaningless, 
due to the unknown presence of systematic errors that are orders of 
magnitude larger. To solve this fundamental problem in measurement 
science, we are optimizing and applying nanofabrication processes to 
develop reference materials for localization microscopy, and 
demonstrating their use in quantitative methods of microscope calibration. 

Our program consists of two complementary approaches. In the first, 
involving applied metrology, we are developing reference materials such as 
aperture arrays that can serve as standalone artifacts for widespread 
deployment. This approach will require the application of critical-
dimension metrology to establish the traceability of master artifacts, and 
their use to calibrate a super-resolution microscope for high-throughput 
characterization of economical batches of reference materials. In the 
second approach, involving fundamental research, we are demonstrating 
the application of reference materials and calibration methods in our own 
experimental measurements. Most interestingly, achieving vertical 
integration of our two approaches and the unique capabilities that result, 
we are building reference materials into measurement devices for in situ 
calibration of localization measurements for nanoparticle characterization. 

. 
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