Wednesday Morning, October 23, 2019

Electronic Materials and Photonics Division Room A214 - Session EM+2D+AS+MI+MN+NS+TF-WeM

Nanostructures and Nanocharacterization of Electronic and Photonic Devices

Moderators: Sang M. Han, University of New Mexico, Jason Kawasaki, University of Wisconsin - Madison

8:00am EM+2D+AS+MI+MN+NS+TF-WeM-1 Photonic Thermal Conduction in Semiconductor Nanowires, *E Tervo*, *M Gustafson*, *Z Zhang*, *B Cola*, *Michael A. Filler*, Georgia Institute of Technology

We present a practical material system—chains of infrared plasmonic resonators situated along the length of semiconductor nanowires—where near-field electromagnetic coupling between neighboring resonators enables photonic thermal transport comparable to the electronic and phononic contributions. We model the thermal conductivity of Si and InAs nanowires as a function of nanowire diameter, resonator length, aspect ratio, and separation distance by combining discrete dipolar approximation calculations, to determine the relevant dispersion relations, with thermal kinetic theory. We show that photonic thermal conductivities exceeding 1 W m⁻¹ K⁻¹ are possible for 10 nm diameter Si and InAs nanowires containing repeated resonators at 500 K, more than an order of magnitude higher than existing materials systems and on par with that possible with phonons and electrons. These results highlight the potential for photons in properly engineered solids to carry significant quantities of heat and suggest new ways to dynamic control thermal conductivity.

8:20am EM+2D+AS+MI+MN+NS+TF-WeM-2 Electric Field-Induced Defect Migration and Dielectric Breakdown in ZnO Nanowires, Hantian Gao, M Haseman, Department of Physics, The Ohio State University; H von Wenckstern, M Grundmann, Universität Leipzig, Felix-Bloch-Institut für Festkörperphysik; L Brillson, The Ohio State University

Nanowires of the II-VI compound semiconductor ZnO have generated considerable interest for next generation opto- and microelectronics . Central to nanowire electronics is understanding and controlling native point defects, which can move1 and lead to dielectric breakdown under applied electric fields. We used nanoscale lateral and depth-resolved cathodoluminescence spectroscopy (DRCLS) with hyperspectral imaging (HSI) in a scanning electron microscope (SEM) to observe defect migration and redistribution directly under applied electric fields and after dielectric breakdown. HSI maps represent lateral intensity distributions of specific features acquired pixel by pixel across SEM-scanned areas and normalized to near band edge (NBE) emissions. A pulsed layer deposited (PLD) ZnO microwire (3 µm diameter) exhibited homogeneous distributions of common luminescence features at 2.0 eV (Vzn cluster) and 2.35 eV (Cuzn) as well as 2.7 and 2.9 eV $\left(V_{Zn}\right)$ peaks near the wire surface. With increasing electrical bias up to 3x10⁵ V/cm between two Pt contacts, these defects systematically redistribute, even at room temperature, moving toward and under one of the contacts, draining the "bulk" nanowire, especially its near-surface region. Since ionized V_{Zn}-related and Cu_{Zn} antisite defects are acceptors, their removal reduces the compensation of electron density in the typically n-type ZnO and thus its resistivity.

Besides HSI lateral maps, DRCLS vs. incident beam energy yields depth profiles radially of defects at specific locations along the nanowire. These exhibit high near-surface and wire core densities that biasing reduces. Current voltage measurements with increasing field gradients show a gradual resistivity decrease until an abrupt dielectric breakdown of the microwire at 300 kV/cm (150 V/5 μ m). The acceptor removal between the contacts and their accumulation under one of the contacts can both contribute to this breakdown due to the decrease in resistivity and higher current conduction between the contacts and possible defect-assisted tunneling² across the increased defect density under the contact, respectively. These electric field-induced defect movements may be of more general significance in understanding dielectric breakdown mechanism not only in ZnO nanostructures but also bulk semiconductors in general.

HG, MH, and LJB gratefully acknowledge support from AFOSR Grant No. FA9550-18-1-0066 (A. Sayir). HVW and MG acknowledge Deutsche Forschungsgemeinschaft (Gr 1011/26- 1).

1. G. M. Foster, et al., Appl. Phys. Lett. **111**, 101604 (2017).

2. J.W.Cox, et al., Nano Lett, 18, 6974 (2018).

8:40am EM+2D+AS+MI+MN+NS+TF-WeM-3 Characterization of SiGe/Si Multilayer FIN Structures using X-Ray Diffraction Reciprocal Space Maps, Roopa Gowda, M Korde, SUNY Polytechnic Institute; M Wormington, Jordan Valley Semiconductors Inc.; A Diebold, SUNY Polytechnic Institute Nanowire and Nanosheet FET's are potential replacements for FinFET's, mainly beyond sub-10nm CMOS technology nodes, as gate-all-around (GAA) FET device architecture provides improved electrostatics in higher on current (I on) and better subthreshold swing. As GAA is one of the best promising device for logic applications for future technology nodes, there is an increased need of characterization technique for such multilayer Si1-"Ge_x/ Si complex structures. We studied Si_{1-x}Ge_x/Si/Si₁₋xGex/Si/Si₁₋ xGex/Simultilayer FIN structures using X-Ray Diffraction Reciprocal Space Maps (RSM). RSM is one of the most popular technique to study epitaxial thin-films nanostructures due to straightforward analysis of the data. We found RSM simulations showing sensitivity of nanosheet fin structures dimensions such as pitch-walk (PW), Nanosheet thickness (NST), composition and shape. RSM's provide better means to interpret more complex diffraction measurements than real space constructions. RSMs of Si1-xGex/Si multilayer structure has been simulated using Bruker JV-RADS v6.5.50/HRXRD software. 1D line profiles extracted from RSMs was also used for the analysis of nanostructures dimensions. We obtained multilayer structure dimensions from the published information. We studied the influence of nanostructure parameters PW, NST, Composition and shape on RSMs. Imperfect periodic structures impact the intensity modulation of the grating rods (GRs). We observed that satellite peaks intensity reduces and harmonics peaks intensity enhances as PW increases. Rate of intensity change in higher order peaks is much faster than the lower harmonic peaks. We observed that the spacing between adjacent interference fringes in RSMs is related to the thickness of the layers. The period of fringes is inversely proportional to the thickness of the layer, hence total FIN height can be determined. 1D line profiles along Qz shows decreased angular width and increase in intensity of the layer peak and interference fringes as NST increases. Symmetric 004 longitudinal RSMs and their line profiles clearly show layer peak shift from substrate peak as composition increases due to increase of SiGe lattice spacing along the growth direction. Cross-shaped GR pattern in RSMs is observed which is due to trapezoidal surface grating caused by SWA. Line profiles indicate that fin shapes influence the modulation of the GRs as a function of Q_x. We demonstrate the characterization of complex Si1-xGex/ Si multilayers using RSMs and their line profiles which are relevant for lateral nanowire and nanosheet FETs. Above findings from RSM simulations clearly indicate the

9:00am EM+2D+AS+MI+MN+NS+TF-WeM-4 Nanoscale Depth and Lithiation Dependence of V₂O₅ Band Structure by Cathodoluminescence Spectroscopy, *Mitchell Walker*, *N Pronin*, The Ohio State University; *A Jarry*, *J Ballard*, *G Rubloff*, University of Maryland, College Park; *L Brillson*, The Ohio State University

influence of variations in structural dimensions.

Vanadium pentoxide (V2O5) has attracted considerable interest for its potential use as a cathode for solid state lithium ion batteries. While researchers have studied the V2O5 lithiation charge/discharge cycle for over two decades, we are only now able to measure directly its electronic band structure from the surface to the thin film bulk and its changes with Li intercalation on a near-nanometer scale. We used depth-resolved cathodoluminescence spectroscopy (DRCLS) to monitor the changes in electronic structure from the free surface to the thin film bulk several hundred nm below. DRCLS measures optical transitions at 1.8-2, 3.1-3.2, 3.6-3.7, 4.0-4.1, and 4.6-4.7 eV between multiple conduction bands to the pristine (α) V₂O₅ valence band maximum in excellent agreement with V_{3d}t_{2g} conduction band densities of states (DOS) predicted by density functional theory (DFT).1 Triplet conduction band states at 1.8, 1.9, and 2 eV correspond to predicted V $3d_{xy}$ – $O_c 2p_x/2p_y$ hybridized states resulting from strong deviations of the unit cell VO₆ octahedra from cubic coordination correspond to optical absorption edges along the 3 crystallographic axes. With excitation depth increasing from < 10 to 125 nm calibrated by Monte Carlo simulations, the relative amplitudes and energies of these states change, signifying gradual changes in octahedral distortion. The band structure changes significantly with Li intercalation into $Li_xV_2O_5$ for x = 0, 1, and 2. Lithiation gradually removes the hybridized band and introduces a 2.4-2.7 eV V_{3d} t_{2g} band extending 50 nm (x=1) or 25 nm (x=2) into the surface. Higher (4.0 and 4.4 eV) features possibly related to a secondary phase dominate the spectra deep inside all V2O5 films near the battery electrode. Delithiation reintroduces the 1.8-2 eV split-off band although significantly narrowed by octahedral distortions. Overall, DRCLS shows that the lithiation cycle alters the V_2O_5 band structure on a scale of 10-100's of

Wednesday Morning, October 23, 2019

nm with lithiation. The direct measure of V_2O_5 's electronic band structure as a function of lithiation level provided by DRCLS can help guide future battery engineering work as more efficient lithium ion batteries are developed. In particular, these unique electrode measurements may reveal in what ways lithiation changes $V_{-2}O_5$ irreversibly, as well as reveal methods to extend solid state battery life. MW and LJB acknowledge support from NSF grant DMR-18-00130. AJ and GR acknowledge Nanostructures for Electrical Energy Storage (NEES), a Department of Energy Office of Science Frontier Research Center.

1. V. Eyert and K.-H. Höck, "Electronic structure of V_2O_5 : Role of octahedral deformation," Phys. Rev. B 57, 12727 (1998).

9:20am EM+2D+AS+MI+MN+NS+TF-WeM-5 Electron Microscopy of Quantum Materials: From Learning Physics to Atomic Manipulation, Sergei Kalinin, Oak Ridge National Laboratory INVITED

Atomically-resolved imaging of materials has become the mainstay of modern materials science, as enabled by advent of aberration corrected scanning transmission electron microscopy (STEM). In this talk, I will present the new opportunities enabled by physics-informed big data and machine learning technologies to extract physical information from static and dynamic STEM images. The deep learning models trained on theoretically simulated images or labeled library data demonstrate extremely high efficiency in extracting atomic coordinates and trajectories, converting massive volumes of statistical and dynamic data into structural descriptors. I further present a method to take advantage of atomic-scale observations of chemical and structural fluctuations and use them to build a generative model (including near-neghbour interactions) that can be used to predict the phase diagram of the system in a finite temperature and composition space. Similar approach is applied to probe the kinetics of solid-state reactions on a single defect level and defect formation in solids via atomic-scale observations. Finally, synergy of deep learning image analytics and real-time feedback further allows harnessing beam-induced atomic and bond dynamics to enable direct atom-by-atom fabrication. Examples of direct atomic motion over mesoscopic distances, engineered doping at selected lattice site, and assembly of multiatomic structures will be demonstrated. These advances position STEM towards transition from purely imaging tool for atomic-scale laboratory of electronic, phonon, and quantum phenomena in atomically-engineered structures.

11:00am EM+2D+AS+MI+MN+NS+TF-WeM-10 Hot Electron Emission from Waveguide Integrated Graphene, *Ragib Ahsan*, *F Rezaeifar*, *H Chae*, *R Kapadia*, University of Southern California

From free electron laser sources to electronic structure measurements, electron emission devices play an important role in a wide range of areas. Photoemission is one of the basic processes exploited in modern electron emission devices. However, higher-order processes like multiphoton absorption or optical field induced emission are necessary for efficient photoemission from high workfunction metallic emitters. Our work demonstrates a graphene emitter integrated on a waveguide that can evanescently couple with the photons delivered from a CW laser (405 nm) and registers photoemission at a peak power that is orders of magnitude lower than previously published results based on multiphoton and optical field induced emission processes. Coupling FDTD analysis of the waveguide to a rigorous quantum mechanical study of the scattering mechanisms and the tunneling processes in graphene, we have been able to model the emission current from the graphene emitter with good agreement to the experimental data. Our investigation reveals that the photoexcited electrons can go through three mutually competitive processes: (i) electron-electron scattering (ii) electron-phonon scattering and (iii) directly emission into the vacuum. Absorption of a photon causes a reduction in the tunnel barrier seen by the electron and the emission rate increases exponentially. Integration of graphene to the waveguide enables evanescent coupling between electrons and the photons causing almost 100% absorption of the photons. Our integrated photonics approach demonstrates an emission efficiency that is three orders of magnitude greater than free space excitation. These results suggest that integrating photonic elements with low dimensional materials such as 2D materials, nanoparticles, quantum dots, etc. can provide a new domain of efficient electron emission devices and integrated photonics.

11:20am EM+2D+AS+MI+MN+NS+TF-WeM-11 Imaging Candidate Nanoelectronic Materials with Photoemission Electron Microscopy (PEEM), *Sujitra Pookpanratana, S Robey*, National Institute of Standards and Technology (NIST); *T Ohta*, Sandia National Laboratories

The drive to produce smaller and lower power electronic components for computing is pushing the semiconductor industry to consider novel

nanoscale device structures, not based solely on crystalline silicon. Continued innovation and progress towards novel nanoelectronic materials and devices in turn requires metrologies sensitive to electronic properties at these length scales. Tip-based imaging techniques provide electronic contrast with sub-nanometer resolution, however it is a local, scanningbased technique. Photoemission (or photoelectron spectroscopy) is the dominant technique to provide detailed electronic band structure information- level energies, dispersion, polarization dependence, etc. - but typically requires materials with millimeter, or larger, length scales. Photoemission electron microscopy (PEEM) can be employed to allow access to this vital information, providing full-field imaging capabilities sensitive to a variety of electronic contrast mechanisms at 10's of nanometers length scales. Here, we will present our results on imaging the impact of molecular dopants on multilayer tungsten disulfide (WS₂) employing the PEEM at the Center for Integrated Nanotechnologies within Sandia National Laboratories. We will also discuss the commissioning of a recently installed PEEM to perform complementary measurements at NIST-Gaithersburg.

Technological commercialization of transition metal dichalcogenides (TMDs) in nanoelectronics devices requires control of their electronic properties, such as charge carrier type and density, for specific device functionality. Conventional techniques for doping are problematic for atomically thin 2D materials. The sensitivity of mono- to few-layer (TMDs) to their local environment and interfaces can be employed via surface doping of molecules on TMDs to provide a promising route toward controllable doping. Investigations of surface doping for one to few layer WS₂ were performed using mechanically exfoliated WS₂ on a SiO₂/Si substrate that was then exposed to tris(4-bromophenyl)ammoniumyl hexachloroantimonate, a p-dopant molecule. PEEM was performed before and after p-dopant exposure. After doping, we find that the contrast of the surface WS₂ physical features change and valence band edge shifts about 0.8 eV away from the Fermi energy, consistent with p-doping. We will discuss the effects of molecular doping in terms of homogeneity and surface features across multiple WS2 flakes. Lastly, we will discuss commissioning of a new PEEM instrument installed at NIST in 2019, using results of graphene to demonstrate imaging capability and energy resolution of this instrument.

11:40am EM+2D+AS+MI+MN+NS+TF-WeM-12 Comparison of Features for Au and Ir Adsorbed on the Ge (110) Surface, *Shirley Chiang*, University of California, Davis; *R Xie*, *H Xing*, Donghua University, China; *T Rahman*, University of Central Florida; *C Fong*, University of California, Davis

Two ad-atoms of Au and Ir adsorbed, respectively, on the Ge(110) surface are studied by a first-principles algorithm based on density functional theory. The surface is modeled by a slab consisting of 108 Ge atoms with a 10 Å vacuum region. Hydrogen atoms are used to saturate the dangling orbitals at the other side of the vacuum region. Two cases of Au adsorption and one case of Ir are reported. The case of Ir has a large binding energy because of its small atomic size compared with the Ge atom, and the partially filled d-states. The total energy for each case is given, as are the energies for removing one ad-atom at a time and also both ad-atoms. The binding energy of each case is obtained by simply taking the energy difference between these configurations; this method is more realistic because the experimental data measured by LEEM and STM indicate that the collective motions of the ad-atoms do not allow the surface to relax to its equilibrium state.[1] For a large separation in the case of two Au atoms, there is a smaller binding energy than for one ad-atom. This can relate to the fact that the collective motions seen experimentally do not happen at a full monolayer coverage of ad-atoms.[1] Additional comparisons will be made to an atomic model for Ir/Ge(111) from STM measurements.[2]

[1] B. H. Stenger et al., Ultramicroscopy, 183, 72 (2017).

[2] M. van Zijll et al., Surf. Sci. 666, 90, (2017).

Support from NSF DMR-1710748 (SC, CYF); NSF DMR-1710306 (TSR); National Natural Science Foundation of China Grants 61376102, 11174048 and computational support from Shanghai Supercomputer Center (RKX, HZX).

Wednesday Morning, October 23, 2019

12:00pm EM+2D+AS+MI+MN+NS+TF-WeM-13 Reference Materials for Localization Microscopy, *C Copeland, R Dixson, L Elliott, B Ilic*, National Institute for Science and Technology (NIST); *D Kozak, K Liao*, FDA, National Institute for Science and Technology (NIST); *J Liddle*, NIST Center for Nanoscale Science and Technology; *A Madison*, National Institute for Science and Technology; *A Madison*, National Institute for Science and Technology (NIST); *J Myung*, FDA; *A Pintar*, *Samuel Stavis*, National Institute for Science and Technology (NIST)

As the diffraction limit fades away into the history of optical microscopy, new challenges are emerging in super-resolution measurements of diverse systems ranging from catalysts to therapeutics. In particular, due to common limitations of reference materials and microscope calibrations, many localization measurements are precise but not accurate. This can result in gross overconfidence in measurement results with statistical uncertainties that are apparently impressive but potentially meaningless, due to the unknown presence of systematic errors that are orders of magnitude larger. To solve this fundamental problem in measurement science, we are optimizing and applying nanofabrication processes to develop reference materials for localization microscopy, and demonstrating their use in quantitative methods of microscope calibration.

Our program consists of two complementary approaches. In the first, involving applied metrology, we are developing reference materials such as aperture arrays that can serve as standalone artifacts for widespread deployment. This approach will require the application of criticaldimension metrology to establish the traceability of master artifacts, and their use to calibrate a super-resolution microscope for high-throughput characterization of economical batches of reference materials. In the second approach, involving fundamental research, we are demonstrating the application of reference materials and calibration methods in our own experimental measurements. Most interestingly, achieving vertical integration of our two approaches and the unique capabilities that result, we are building reference materials into measurement devices for in situ calibration of localization measurements for nanoparticle characterization.

Author Index

Bold page numbers indicate presenter

- A -Ahsan, R: EM+2D+AS+MI+MN+NS+TF-WeM-10, **2** — B — Ballard, J: EM+2D+AS+MI+MN+NS+TF-WeM-4.1 Brillson, L: EM+2D+AS+MI+MN+NS+TF-WeM-2, 1; EM+2D+AS+MI+MN+NS+TF-WeM-4.1 - C -Chae, H: EM+2D+AS+MI+MN+NS+TF-WeM-10.2 Chiang, S: EM+2D+AS+MI+MN+NS+TF-WeM-12, **2** Cola, B: EM+2D+AS+MI+MN+NS+TF-WeM-1, 1 Copeland, C: EM+2D+AS+MI+MN+NS+TF-WeM-13, 3 - D -Diebold, A: EM+2D+AS+MI+MN+NS+TF-WeM-3, 1 Dixson, R: EM+2D+AS+MI+MN+NS+TF-WeM-13.3 — E — Elliott, L: EM+2D+AS+MI+MN+NS+TF-WeM-13.3 — F — Filler, M: EM+2D+AS+MI+MN+NS+TF-WeM-1, **1** Fong, C: EM+2D+AS+MI+MN+NS+TF-WeM-12, 2 — G — Gao, H: EM+2D+AS+MI+MN+NS+TF-WeM-2, 1 Gowda, R: EM+2D+AS+MI+MN+NS+TF-WeM-3, 1 Grundmann, M: EM+2D+AS+MI+MN+NS+TF-WeM-2, 1

Gustafson, M: EM+2D+AS+MI+MN+NS+TF-WeM-1, 1 — H — Haseman, M: EM+2D+AS+MI+MN+NS+TF-WeM-2.1 -1 - 1Ilic, B: EM+2D+AS+MI+MN+NS+TF-WeM-13, 3 - 1 -Jarry, A: EM+2D+AS+MI+MN+NS+TF-WeM-4, 1 — к — Kalinin, S: EM+2D+AS+MI+MN+NS+TF-WeM-5. **2** Kapadia, R: EM+2D+AS+MI+MN+NS+TF-WeM-10.2 Korde, M: EM+2D+AS+MI+MN+NS+TF-WeM-3, 1 Kozak, D: EM+2D+AS+MI+MN+NS+TF-WeM-13, 3 — L — Liao, K: EM+2D+AS+MI+MN+NS+TF-WeM-13, 3 Liddle, J: EM+2D+AS+MI+MN+NS+TF-WeM-13, 3 — м — Madison, A: EM+2D+AS+MI+MN+NS+TF-WeM-13, 3 Myung, J: EM+2D+AS+MI+MN+NS+TF-WeM-13, 3 -0 -Ohta, T: EM+2D+AS+MI+MN+NS+TF-WeM-11, 2 — P — Pintar, A: EM+2D+AS+MI+MN+NS+TF-WeM-13, 3 Pookpanratana, S: EM+2D+AS+MI+MN+NS+TF-WeM-11, 2

Pronin, N: EM+2D+AS+MI+MN+NS+TF-WeM-4.1 — R — Rahman, T: EM+2D+AS+MI+MN+NS+TF-WeM-12.2 Rezaeifar, F: EM+2D+AS+MI+MN+NS+TF-WeM-10, 2 Robey, S: EM+2D+AS+MI+MN+NS+TF-WeM-11.2 Rubloff, G: EM+2D+AS+MI+MN+NS+TF-WeM-4, 1 -s-Stavis, S: EM+2D+AS+MI+MN+NS+TF-WeM-13, **3** — т — Tervo, E: EM+2D+AS+MI+MN+NS+TF-WeM-1, 1 - v von Wenckstern, H: EM+2D+AS+MI+MN+NS+TF-WeM-2, 1 — w — Walker, M: EM+2D+AS+MI+MN+NS+TF-WeM-4, 1 Wormington, M: EM+2D+AS+MI+MN+NS+TF-WeM-3, 1 - X -Xie, R: EM+2D+AS+MI+MN+NS+TF-WeM-12, Xing, H: EM+2D+AS+MI+MN+NS+TF-WeM-12, 2 — Z — Zhang, Z: EM+2D+AS+MI+MN+NS+TF-WeM-1, 1