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1:40pm EM+PS+TF-MoA-1 Short-term Plasticity to Long-term Plasticity 
Transition Mimicked by High Mobility InP FETs with TiO2 Trapping Layer, 
Jun Tao, R Kapadia, University of Southern California 

Memory is widely believed to be encoded and stored in the central nervous 
system by altering the synapse strength via activity-dependent synaptic 
plasticity between millions of neurons in vertebrates. Consolidations from 
short-term plasticity (STP) to long-term plasticity (LTP) not only transform 
the important external stimuli to permanently stored information but 
release storage space for accepting new coming signals. Although 
memristor technology (e.g. RRAM) has been reported to mimic the STP and 
LTP characteristics and exhibited its merit in density comparing to 
traditional CMOS based SRAM technology, some conventional memristors 
suffer non-ideal operation speed, small dynamic range, and high resistance 
variation. 

In our work, the single crystal Indium Phosphide (InP) based synaptic 
devices demonstrated its advantages not only in the emulation of the 
synaptic functions for both STP and LTP characteristics but also in the 
controllability of transition from STP to LTP. Since we interpret gate voltage 
pulses as the pre-synaptic action potentials, the source-drain current as 
post-synaptic current, and the channel conductance as synaptic weight, the 
consolidations from STP to LTP are elaborately demonstrated through 
mediating multiple action potential parameters like pulse numbers, pulse 
intervals (or rates), and pulse durations. The synaptic devices we 
demonstrated here are essentially single crystal channel InP Field Effect 
Transistors (FETs) fabricated on Si/SiO2 substrates with the templated 
liquid-phase (TLP) method. In addition, TiO2 trapping layer is inserted into 
the gate dielectric layer to provide extra deeper trap states. The ‘ratchet’ 
mechanism is utilized to have the charges ‘fall’ into the TiO2 well and 
implement the transition from STP to LTP effectively. 

2:00pm EM+PS+TF-MoA-2 Magnetic Domain Wall Devices for Artificial 
Neural Network, Saima Siddiqui, S Dutta, A Tang, L Liu, M Baldo, C Ross, 
MIT 

Magnetic domain wall devices are promising candidates for logic [1] and 
storage class memory [2]. Due to the non-volatility and energy-efficient 
switching, this type of device is one of the prime candidates for in memory 
computing and brain-inspired computing. In-memory computing is a non-
von-Neumann architecture where data computation and storage are done 
locally to reduce the data movement between the processor and the 
storage memory [3]. The layer-by-layer operations of data require synapses 
(i.e. variable resistors whose resistance vary linearly with the input) and 
activation function generators between layers (i.e. variable resistors whose 
resistance vary non-linearly with the input current). 

Domain walls’ motion in a magnetic wire is a function of applied current 
due to spin-orbit torque from an adjacent heavy metal (Fig. 1). The current 
density and spin orbit torque can be modified along the wire by adjusting 
the width of the heavy metal. The spin orbit torque then becomes a 
function of the domain wall position, which makes the domain wall motion 
a nonlinear function of the applied current (Fig. 2). Linear and nonlinear 
domain wall motion can be detected via magnetoresistance by using a 
magnetic tunnel junction in which the magnetic wire forms the free layer. 
The electrical detection is necessary for the analog matrix multiplication in 
neuromorphic accelerator. However, domain walls are pinned due to the 
magnetostatic energy minima on the sides of the MTJ. The synaptic (Fig. 3) 
and activation function (Fig 4) like magnetoresistive behavior can still be 
generated by using multiple MTJs in parallel. In this study, we demonstrate 
linear and nonlinear domain wall motion in magnetic wires and modify the 
design of magnetic tunnel junctions to convert these motions into 
magnetoresistance. The experimental observations of the device 
characteristics agree with both analytical and micromagnetic modeling. 

[1] J. A. Currivan-Incorvia, S. Siddiqui, S. Dutta, E. R. Evarts, J. Zhang, D. 
Bono, C. A. Ross, and M. A. Baldo, Nat Commun., 7, 10275 (2016). 

[2] Stuart S. P. Parkin, Masamitsu Hayashi, and Luc Thomas, Science, Vol. 
320, Issue 5873, pp. 190-194 (2008) 

[3] Jacob Torrejon, Mathieu Riou, Flavio Abreu Araujo, Sumito Tsunegi, 
Guru Khalsa, Damien Querlioz, Paolo Bortolotti, Vincent Cros, Kay Yakushiji, 
Akio Fukushima, Hitoshi Kubota, Shinji Yuasa, Mark D. Stiles & Julie Grollier, 
Nature volume 547, pp. 428–431 (2017). 

2:20pm EM+PS+TF-MoA-3 Ferroelectric Devices for Non-von Neumann 
Computing, Z Wang, Asif Khan, Georgia Institute of Technology INVITED 

Excitation and inhibition go hand in hand in neuronal circuits in biological 
brains. For example, neurons in the visual and the auditory cortices provide 
excitatory responses to visual and auditory stimuli, respectively. On the 
other hand, interneurons in the central nervous system provide inhibitory 
signals to downstream neurons thereby imparting regulation and control in 
neuronal circuits—the loss of which often causes neurodegenerative 
disorders. These neuro-biological facts have inspired the bio-mimetic 
computational perspective that artificial, excitatory neurons need to be 
paired with inhibitory connections for functional correctness and efficient 
compute models such as spiking neural networks. 

In this talk, we will introduce a ferroelectric neuromorphic transistor 
platform [1,2] which can (1) efficiently incorporate both excitatory and 
inhibitory inputs in the simple two transistor topology of an artificial, 
ferroelectric spiking neuron, and (2) emulate several classes of biological 
spiking dynamics (such as regular, fast, Thalamo-Cortical spiking and so on). 
We will discuss the recent experimental demonstrations of ferroelectric 
spiking neurons. The talk will end with a simulation experiment where a 
full-scale spiking neural network was implemented using experimentally 
calibrated ferroelectric circuit models and the network was benchmarked 
analog CMOS and other emerging device technologies. 

References: 

[1] Z. Wang, B. Crafton, J. Gomez, R. Xu, A. Luo, Z. Krivokapic, L. Martin, S. 
Datta, A. Raychowdhury, A. I. Khan, “Experimental Demonstration of 
Ferroelectric Spiking Neurons for Unsupervised Clustering,” The 64th 
International Electron Devices Meeting (IEDM 2018), 2018. 

[2] Z. Wang, S. Khandelwal & A. I. Khan, “Ferroelectric oscillators and their 
coupled networks,” IEEE Electron Dev. Lett. 38, 1614 (2017). 

3:00pm EM+PS+TF-MoA-5 Ultrafast Measurement of Nanoseconds 
Polarization Switching in Ferroelectric Hafnium Zirconium Oxide, 
Mengwei Si, P Ye, Purdue University 

Ferroelectric (FE) hafnium oxides (HfO2) such as hafnium zirconium oxide 
(HZO) is the promising thin film ferroelectric material for non-volatile 
memory applications. The ultrafast measurements of polarization switching 
dynamics on ferroelectric (FE) and anti-ferroelectric (AFE) hafnium 
zirconium oxide (HZO) are studied, with the shortest electrical pulse width 
down to as low as 100 ps. The transient current during the polarization 
switching process is probed directly. The switching time is determined to 
be as fast as 10 ns to reach fully switched polarization with characteristic 
switching time of 5.4 ns for 15 nm thick FE HZO and 4.5 ns for 15 nm thick 
AFE HZO by Kolmogorov−Avrami−Ishibashi (KAI) model. The limitation by 
parasitic effect on capacitor charging is found to be critical in the correct 
and accurate measurements of intrinsic polarization switching speed of 
HZO. The work is in close collaborations with Xiao Lyu, Wonil Chung, Pragya 
R. Shrestha, Jason P. Campbell, Kin P. Cheung, Haiyan Wang, Mike A. 
Capano and was in part supported by SRC and DARPA. 

3:20pm EM+PS+TF-MoA-6 Interfacial Charge Engineering in Ferroelectric-
Gated Mott Transistors, X Chen, Y Hao, L Zhang, Xia Hong, University of 
Nebraska-Lincoln 

Ferroelectric field effect transistors (FeFETs) built upon Mott insulator 
channel materials have been intensively investigated over the last two 
decades for developing nonvolatile memory and logic applications with 
sub-nanometer size scaling limit. However, the intrinsically high carrier 
density of the Mott channel (1022-1023/cm3) also imposes significant 
challenges in achieving substantial modulation of the channel conduction. 
In this work, we exploit the intricate interplay between interfacial charge 
screening and transfer effects in epitaxial heterostructures composed of 
two strongly correlated oxide layers, one layer of rare earth nickelate RNiO3 

(R = La, Nd, Sm) and one layer of (La,Sr)MnO3 (LSMO), to realize a giant 
enhancement of the ferroelectric field effect in Mott-FeFETs with a 
Pb(Zr,Ti)O3 gate. For devices with 1-5 nm single layer RNiO3 channels, the 
room temperature resistance switching ratio (Roff-Ron)/Ron increases with 
decreasing channel thickness till it reaches the electrical dead layer 
thickness. For devices built upon RNiO3/LSMO bilayer channels, the 
resistance switching ratio is enhanced by up to two orders of magnitude 
compared with the single layer channel devices with the same channel 
thickness. Systematic studies of the layer thickness dependence of the field 
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effect show that the LSMO buffer layer not only tailors the carrier density 
profile in RNiO3 through interfacial charge transfer, but also provides an 
extended screening layer that reduces the depolarization effect in the 
ferroelectric gate. Our study points to an effective strategy for building high 
density nanoelectronic and spintronic applications via functional complex 
oxide heterointerfaces. 

4:00pm EM+PS+TF-MoA-8 The Interface of Transition Metal 
Dichalcogenides and Ferroelectric Oxides, Maria Gabriela Sales, S 
Jaszewski, S Fields, R Christopher, N Shukla, J Ihlefeld, S McDonnell, 
University of Virginia 

Transition metal dichalcogenides (TMDs) are an interesting class of 
materials because of their unique properties owing to their 2D nature, 
wherein layers that are covalently bonded in-plane are held together by 
van der Waals forces in the out-of-plane direction, similar to graphene. 
However, unlike graphene, semiconducting TMDs have a band gap that is 
tunable with layer thickness, allowing control over its properties depending 
on specific applications. One such application is in ferroelectric-based 
transistors, which have high potential for use in memory and logic, but 
whose major drawback in integration is the poor semiconductor-
ferroelectric interface when using silicon as the semiconducting channel, 
due to issues such as interdiffusion across the interface. Thus, a promising 
alternative route is using a TMD as the channel with a ferroelectric material 
as the gate dielectric. This is expected to have an improved interface 
quality because of the fact that TMDs have no dangling bonds at the 
surface and are highly stable in-plane. In this study, we focus on a mixture 
of hafnium oxide and zirconium oxide as our ferroelectric material, with 
zirconium stabilizing the ferroelectric phase in hafnia. We explore the 
TMD/ferroelectric structure, addressing certain integration issues in 
growth, and looking at their interface chemistry and thermal stability. 
Specifically, we look at commercially available geological MoS2 and 
molecular beam epitaxy-grown WSe2 interfaced with an atomic layer 
deposited HfxZr1-xO2 ferroelectric. Our report will focus on the results of our 
investigations of this interface carried out using a combination of X-ray 
photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) techniques. 

4:20pm EM+PS+TF-MoA-9 Electronic and Thermal Properties of 2D 
Materials, Connor McClellan, E Yalon, K Smithe, C English, S Vaziri, C Bailey, 
A Sood, M Chen, E Pop, Stanford University 

This talk will present recent highlights from our research on two-
dimensional (2D) materials and devices including graphene, and transition 
metal dichalcogenides (TMDs). The results span from fundamental 
measurements and simulations, to devices, to system-oriented applications 
which take advantage of unusual 2D material properties. 

Using the low cross-plane thermal conductance, we found unexpected 
applications of graphene as an ultra-thin electrode to reduce power 
consumption in phase-change memory [1]. We have also demonstrated 
wafer-scale graphene systems for analog dot product computation [2]. We 
have grown monolayer 2D semiconductors by chemical vapor deposition 
over cm2 scales on amorphous oxides, including MoS2 with low device 
variability [3], WSe2, and MoSe2. 

Using a self-aligned process, we demonstrated 10 nm gate-length 
monolayer MoS2 transistors with excellent switching characteristics and 
approaching ballistic limits [4]. Using sub-stochiometric oxides, we 
achieved high electron doping to reduce electrical contact resistance down 
to 480 Ω∙μm and increase on-current up to a record of 700 μA/μm in 
monolayer MoS2 [5]. We also directly measured the saturation velocity in 
monolayer MoS2, finding it is thermally-limited (i.e. by device self-heating 
and phonon scattering) to about one-third that of silicon and about one-
tenth that of graphene [6]. Using Raman thermometry, we uncovered low 
thermal boundary conductance (~15 MW/m2/K) between MoS2 and SiO2, 
which could limit heat dissipation in 2D electronics [7]. We are presently 
exploring unconventional applications including thermal transistors [8], 
which could enable nanoscale control of heat in “thermal circuits” 
analogous with electrical circuits. These studies reveal fundamental limits 
and new applications of 2D materials, taking advantage of their unique 
properties. 

References: [1] A. Behnam et al., Appl. Phys. Letters. 107, 123508 (2015). 
[2] N. Wang et al., IEEE VLSI Tech. Symp., Jun 2016, Honolulu HI. [3] K. 
Smithe et al., ACS Nano 11, 8456 (2017). [4] C. English et al., IEEE Intl. 
Electron Devices Meeting (IEDM), Dec 2016. [5] C. J. McClellan et al., IEEE 
Device Research Conference (DRC), June 2017. [6] K. Smithe et al., Nano 
Lett. 18, 4516 (2018). [7] E. Yalon, E. Pop, et al., Nano Lett. 17, 3429 (2017). 
[8] A. Sood, E. Pop et al. Nature Comm. 9, 4510 (2018). 

4:40pm EM+PS+TF-MoA-10 Electronics in Flatland, Sanjay Banerjee, 
University of Texas at Austin INVITED 

2D materials such as graphene, transition metal dichalcogenides and 
topological insulators have opened up avenues in beyond-CMOS device 
concepts. We will discuss our work involving single or many-particle 2D-2D 
tunneling, leading to transistors with negative differential resistance. We 
also explore spintronics in these systems for novel logic and memory 
devices. We will also discuss the use of these materials in less esoteric, but 
more practical high frequency, mechanically flexible FETs for IoT 
applications. 
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