Supplementary Information

Insights into ALD Al₂O₃ Growth on Hybrid Organic-Inorganic Perovskite

<u>Dibyashree Koushik¹</u>, Lotte Hazendonk¹, Valerio Zardetto², Wilhelmus M. M. Kessels^{1,2}, and Mariadriana Creatore^{1,2}

¹Department of Applied Physics, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands

²TNO- Solliance, High Tech Campus 21, 5656AE Eindhoven, The Netherlands

Figure S1. (a) High angle annular dark field (HAADF) scanning TEM image of the enlarged perovskite/ALD Al₂O₃/Spiro-OMeTAD interface. (b) Corresponding overlapped elemental mapping image.

Figure S3. (a) *In situ* FTIR spectrum of pristine perovskite. (b) Difference spectra of perovskite $+ Al_2O_3/$ perovskite pristine with increasing cycles of ALD Al_2O_3 .

Figure S2. PCE of the champion perovskite devices with and without ALD Al_2O_3 as a function of storage time under different humidity conditions.

Figure S4. Proposed reaction mechanism between TMA and perovskite.