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8:20am 2D+EM+MI+NS+TF-MoM-1 Wafer Scale Epitaxial Growth of 
Monolayer and Few-Layer WS2 by Gas Source Chemical Vapor Deposition, 
Mikhail Chubarov, T Choudhury, J Redwing, The Pennsylvania State 
University 

Tungsten disulfide (WS2) has been widely investigated due to its 
outstanding properties compared to other 2D TMD including a bandgap of 
2 eV, relatively high theoretical electron mobility, valley spin polarization, 
among others. Commonly, the films are grown on amorphous substrates 
like SiO2 and, consequently, consist of high angle grain boundaries after 
coalescence due to the random orientation of domains. These can act as 
scattering and recombination centers for charge carriers limiting device 
performance. To avoid this, a crystalline substrate and epitaxial growth is 
typically employed for general thin film deposition although this approach 
has not been extensively investigated for 2D TMD monolayers. Large area 
growth is also crucial to show technological feasibility of the material for 
wafer-scale device fabrication. 

In this work, we employ cold wall gas source chemical vapor deposition for 
the growth of WS2 films on 2” (0001) α-Al2O3. To achieve coalesced 
monolayer growth over the entire substrate, we implemented a multi-step 
growth process modulating the metal precursor concentration during each 
of the steps. W(CO)6 and H2S were used as precursors in H2 carrier gas. The 
deposition experiments were conducted over the temperature range from 
750 °C to 1000 °C at a pressure of 50 Torr. Characterization of resulting 
samples was conducted using atomic force microscopy (AFM), in-plane X-
ray diffraction (XRD) and room temperature Raman and 
photoluminescence (PL) measurements. 

Initial studies showed that the WS2 films exhibit multiple crystal 
orientations which evolve with growth temperature. At lower deposition 
temperature (750 °C), two orientations rotated 30° one from another were 
observed. At the high deposition temperature (1000 °C), five different 
crystal orientations were present. Among others, orientation with epitaxial 
relation of (10-10)WS2//(10-10)α-Al2O3 was present at all temperatures. It 
was established that the unwanted orientations can be suppressed by 
increasing the H2S concentration. Further adjustment of the growth and 
use of the multi-step growth process led to the formation of a coalesced 
epitaxial monolayer WS2 on α-Al2O3 with XRD FWHM of 10-10 peak in ω 
being 0.09°. This value suggests well in-plane oriented domains with low 
edge dislocation density. A high intensity, narrow (FWHM=40 meV) PL peak 
positioned at 2.01 eV was observed for WS2 films. Monolayer formation 
was confirmed from the AFM height profile (D =0.9 nm) and Raman 
measurements by observing spectral region where layer breathing and 
shear modes would appear. A fully coalesced, monolayer film was achieved 
using the multi-step growth process in a total time of 80 minutes. 

8:40am 2D+EM+MI+NS+TF-MoM-2 Wafer Scale Deposition of Monolayer 
Transition Metal Dichalcogenides, Kortney Almeida, M Wurch, G Stecklein, 
L Bartels, University of California, Riverside 

Monolayer transition metal dichalcogenide (TMD) films are promising 
materials in the continuing development of nanoscale devices. Methods to 
produce wafer-scale monolayer TMD films have included tube-furnace 
chemical vapor deposition (CVD), liquid-phase exfoliation, and metal-
organic CVD. These methods suffer from issues with particulate 
contamination, pyrophoric precursors, and high cost. Here we demonstrate 
the growth of homogeneous wafer-scale monolayer molybdenum disulfide 
(MoS2) using solid inorganic and liquid organic precursors in a high-vacuum 
environment. These results are achieved using an amorphous SiO2substrate 
and without any powder or metal-organic precursors. Growth proceeds by 
the decomposition of carbon disulfide at a hot molybdenum filament, 
which yields volatile MoSxprecursors that precipitate onto a heated wafer. 
The continuous and homogeneous single-layer film of MoS2is deposited at 
wafer scale with a total growth time of fifty minutes. Various thicknesses of 
the thin films are also demonstrated by the manipulation of the filament 
power. Optical and electrical characterization indicates performance 
comparable to or better than MoS2film grown by other wafer-scale growth 
techniques. Our method provides a scalable process to deposit thin TMD 
films in a high vacuum environment. 

9:00am 2D+EM+MI+NS+TF-MoM-3 Crystal Growth of 2D Materials: From 
Model Systems to Integrated Manufacturing, Stephan Hofmann, 
University of Cambridge, UK INVITED 

In order to serve the industrial demand for “electronic-grade” 2D materials, 
we focus on chemical vapour deposition (CVD), and in this talk I will review 
our recent progress in scalable CVD [1] and device integration approaches 
of highly crystalline graphene, hexagonal boron nitride (h-BN) and 
transition metal dichalcogenide films. The systematic use of in-situ 
metrology, ranging from high-pressure XPS to environmental electron 
microscopy, allows us to reveal some of the key growth mechanisms for 
these 2D materials that dictate crystal phase, micro-structure, defects, and 
heterogeneous integration control at industrially relevant conditions [2,3]. I 
will focus on tailored CVD processes to achieve large monolayer h-BN 
domains with lateral sizes exceeding 0.5 mm. Importantly we show that 
depending on the process catalyst as-grown h-BN mono-layers can be 
easily and cleanly transferred using an entirely exfoliation-based 
approach.[4] We demonstrate sequential h-BN pick-up, opening a pathway 
to integrate CVD films in high quality 2D material heterostructures. 
Progress in growth reached a level where adequate characterisation of 
such 2D crystal layers over large areas has become a key challenge. Hence 
we also explore new non-contact characterisation methods [5,6]. We work 
on applications ranging from magentic tunnel junctions [7] to sensing and 
single molecule analysis [8,9], and the talk will focus on some of the diverse 
yet connected integration challenges for CVD 2D films that present a key 
bottleneck towards reliable scale-up manufacturing and commercialisation. 
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9:40am 2D+EM+MI+NS+TF-MoM-5 Understanding the Edge-Controlled 
Growth and Etching in Two-Dimensional Materials, Kai Xiao, X Li, X Sang, 
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory; 
W Zhao, J Dong, Center for Multidimensional Carbon Materials (CMCM), 
Institute for Basic Science (IBS), Ulsan,44919, South Korea; A Purektzy, 
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory; C 
Rouleau, Center for Functional Nanomaterials Brookhaven National 
Laboratory; F Ding, Center for Multidimensional Carbon Materials (CMCM), 
Institute for Basic Science (IBS), Ulsan,44919, South Korea; R Unocic, D 
Geohegan, Center for Nanophase Materials Sciences, Oak Ridge National 
Laboratory 

Understanding the atomistic mechanisms governing the growth and 
etching of two-dimensional (2D) materials is of great importance in guiding 
the synthesis of large area, single-crystalline, high quality 2D crystals and 
heterostructures. In this talk, the growth-etching-regrowth process of 
monolayer 2D crystals by a CVD method will be discussed. We found that 
switching from growth to etching formed pores with various shapes in the 
single crystal domains which can be explained by edge-structure 
dependent growth process. In addition, combined with first principles 
theory, and ab initio simulations, in situ STEM imaging was used to 
understand the evolution of edge structure around pores in monolayers as 
a function of temperature and Mo chemical potential. Our results 
demonstrate that by varying the local chemical environment, we can 
trigger formation of 2D monolayer nanostructures terminated by different 
edge reconstructions during in situ heating and electron beam irradiation 
and form edge structures with metallic and/or magnetic properties. The 
ability to synthesize 2D nanostructures with metastable NW edges having 
predictable atomic structures opens the door to a wide range of novel 2D 
materials and heterosturctures with electrical and magnetic properties as 
revealed by DFT, which could potentially act as functional building blocks 
for next-generation nano-devices. 
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10:00am 2D+EM+MI+NS+TF-MoM-6 Synthesis and Characterization of 1T, 
1T', and 2H MoTe2 Thin Films, Thomas Empante, University of California, 
Riverside; Y Zhou, Stanford University; S Naghibi Alvillar, El Camino College; 
E Reed, Stanford University; L Bartels, University of California, Riverside 

Transition metal dichalcogenides (TMDs) have been of interest over the 
past few decades for their intriguing structural, electronic, and 
optoelectronic properties, particularly when scaled down to thin films. One 
of the most interesting TMD materials is molybdenum ditelluride (MoTe2) 
because of its relative ease to attain multiple phases at room temperature, 
namely the metallic 1T’ phase and the semiconducting 2H phase. Here we 
show a facile chemical vapor deposition process to synthesis not only the 
aforementioned phases but the elusive unreconstructed 1T phase by 
regulating the cooling rate and the addition of carbon dioxide during the 
reaction. Our experimental Raman spectroscopy results were compared to 
theoretical density functional theory calculations which verify the synthesis 
of all three phases. Electronic transport measurements were also used to 
characterize the films and show that the newly synthesized 1T phase is in 
good agreement with theoretical models depicting semi-metallicity as the 
material shows increased conductivity with elevated temperatures. In 
addition to the pure phase materials, mixed phase materials, such as 
2H/1T, can be synthesized with slight alterations to the parameters leading 
to enhancements of the 2H phases’ conductivity. 

10:40am 2D+EM+MI+NS+TF-MoM-8 2D Anisotropic Semiconductors: 
Competing Phases by Alloys Engineering, Sefaattin Tongay, Arizona State 
University INVITED 

Akin to the enormous number of discoveries made through traditional 
semiconductor alloys, alloying selected 2D semiconductors enables 
engineering of their electronic structure for a wide range of new 
applications. 2D alloys have been demonstrated when two components 
crystallized in the same phase, and their bandgaps displayed predictable 
monotonic variation. By stabilizing previously unobserved compositions 
and phases of GaSe1−xTe x at nanoscales on GaAs(111), we demonstrate 
abnormal band bowing effects and phase instability region when 
components crystallize in different phases. Advanced microscopy and 
spectroscopy measurements show as tellurium is alloyed into GaSe, 
nanostructures undergo hexagonal to monoclinic and isotropic to 
anisotropic transition. There exists an instability region (0.56 < x < 0.67) 
where both phases compete and coexist, and two different bandgap values 
can be found at the same composition leading to anomalous band bowing 
effects. Findings also identify other potential systems including NbTiS3 and 
shows the efficacy of the approach. Results highlight unique alloying 
effects, not existing in single-phase alloys, and phase engineering routes for 
potential applications in photonic and electronics. 

11:20am 2D+EM+MI+NS+TF-MoM-10 Low-Defect, High-Uniformity 
Transfer-Free Graphene on SiO2 by Thermal Chemical Vapor Deposition, 
Leslie Chan, D Tsai, Z Wang, C Carraro, R Maboudian, University of 
California, Berkeley 

Chemical vapor deposition (CVD) has emerged as the customary approach 
for scalable, controllable production of graphene for integrated devices. 
Standard CVD graphene must be transferred from a generic metal growth 
substrate onto the desired substrate (e.g., SiO2), but this extra transfer 
often leads to wrinkles, contamination, and breakage that ultimately result 
in poor device performance. Several groups have demonstrated metal-
catalyzed direct CVD-graphene growth on insulating substrates, but the 
final graphene products are deficient in quality and uniformity. This work 
details an expansion of the parameter space that enables lower-defect, 
higher-uniformity graphene than previously reported using nickel and 
copper catalysts, respectively. We introduce a mechanism based on carbon 
permeability that provides deeper insight into the growth process. 
Ultimately, these studies seek to inform the judicious choice of process 
parameters that will lead to large-area, high-quality, layer-controlled 
graphene directly on target substrates. 

11:40am 2D+EM+MI+NS+TF-MoM-11 Barrier Based Approach to Modify 
Vapor Phase Concentrations for High Quality MoS2 Growth, Dongzhi Chi, S 
Wong, Institute of Materials Research and Engineering, Agency for Science 
Technology and Research, Singapore 

Transition metal dichalcogenides, in particular, MoS2, has attracted 
significant attention due to its unique electronic and physical properties. 
Much research efforts are directed towards achieving large area, high 
quality monolayer MoS2 films. Using NiO foam as a reactive barrier, we 
achieved growth of highly homogeneous single layer MoS2 on sapphire 
through chemical vapor deposition. As the NiO barrier reacts with MoO3, 
the concentration of precursors reaching the substrate and thus nucleation 
density is effectively reduced. By doing so, single crystal MoS2 grain sizes of 
up to 170 µm, together with continuous monolayers on the centimeter 
length scale are obtained. Angle-resolved photoemission spectroscopy 
measurements performed describe very well-resolved electronic band 
structure and spin orbit splitting of the bands at room temperature. 
Furthermore, the measurement reveals only two major domain 
orientations, indicating the successful growth of a highly crystalline and 
well-oriented MoS2 monolayer. 
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