
Thursday Morning, October 25, 2018 

Thursday Morning, October 25, 2018 1 8:00 AM 

Surface Science Division 
Room 203C - Session SS+EM+NS-ThM 

Defects in and Functionalization of 2D Materials 
Moderators: Lars Grabow, University of Houston, Greg Kimmel, Pacific 
Northwest National Laboratory 

8:00am SS+EM+NS-ThM-1 Holes, Pinning Sites and Metallic Wires in 
Monolayers of 2D Materials, Thomas Michely, University of Cologne, 
Germany INVITED 

The moiré formed by a monolayer of hexagonal boron nitride with Ir(111) 
provides through a chemisorbed valley region within a physisorbed mesa a 
unique site for its functionalization. Through gentle ion irradiation and mild 

annealing a regular array of vacancy clusters is created with the clusters 
positioned at the valleys where their edges bind to the substrates. Such a 

nanomesh with a regular array of holes with sizes below 1 nm holds 
promise for filter applications. Through vapor phase deposition of a variety 

of materials (e.g. Au or C) arrays of clusters with of tunable size and high 
thermal stability are formed at valley regions. Compared to the graphene 

moiré the templating effect of the hexagonal boron nitride moiré is 
superior due to the uniqueness of the valley pinning site in the unit cell. 

Monolayers of hexagonal boron nitride or graphene are also excellent 
substrates for the on-surface synthesis of new compounds ranging from 

metal-organic nanowires to transition metal disulfides created by reactive 
molecular beam epitaxy with elemental sulfur. This synthesis method 
provides clean, well-decoupled layers with only well-defined defects. 

The most exciting defects we observed so far are two types of mirror twin 
boundaries in MoS2 islands. In these boundaries we observe for the first 
time spin-charge separation in real space making use of the unique local 

spectroscopic capabilities of low temperature STM and STS to identify the 
position and energy of quantum mechanical states in a one dimensional 

box. We critically discuss these results in the light of previous related 
research. 

Contributions to this work by Wouter Jolie, Joshua Hall, Clifford Murray, 
Moritz Will, Phil Valerius, Charlotte Herbig, Carsten Speckmann, Tobias 

Wekking, Carsten Busse, Fabian Portner, Philipp Weiß, Achim Rosch, 
Arkady Krasheninnikov, Hannu-Pekka Komsa, Borna Pielić, Marko Kralj, 

Vasile Caciuc and Nicolae Atodiresei as well as financial support through 
CRC1238 within projects A01 and B06 of DFG are gratefully acknowledged. 

8:40am SS+EM+NS-ThM-3 CO Chemisorption at Pristine, Doped and 
Defect Sites on Graphene/Ni(111), Mario Rocca, G Carraro, University of 
Genova, Italy; M Smerieri, L Savio, IMEM-CNR, UOS Genova, Italy; E 
Celasco, L Vattuone, University of Genova, Italy 

Due to its electrical properties graphene (G) has been successfully used as a 
sensing element for the detection of different gases reaching ppm 

sensitivities which are ascribed to the doping induced by adsorption. The 
sensitivity depends indeed critically on the chemical nature of the gas and 
is lower for CO than for other poisoning species. The nature of the active 

sites is, however, still unclear. If it were due to physisorption, the values of 
the adsorption energy cannot explain the need for high temperature re-

generation of the sensing element. Chemisorption must thus be involved, 
either at defects or by doping, determining the magnitude of the heat of 

adsorption and consequently the sensitivity and the range of temperatures 
at which the sensor can operate. In order to clarify these issues we 
investigated experimentally adsorption of CO on G supported on 

polycrystalline Cu and Ni(111) by HREELS and XPS. 

No adsorbed CO was found at RT while at 100 K chemisorbed CO forms on 
G supported on Ni(111). G on Cu is on the contrary inert. This result 

indicates that the nature of the substrate plays an essential role in the 
adsorption process. The heat of adsorption q is estimated to be about 0.58 
eV/molecule at low coverage, so that an equilibrium coverage of 0.1 ML is 
expected at RT under a CO partial pressure of only 10 mbar. We identify 

top-bridge graphene as the most reactive configuration. 

Doping G/Ni(111) by N2
+ ion bombardment allows for the formation of a 

second, more strongly bound moiety, characterized by a CO stretch 
frequency of 236 meV and by an initial heat of adsorption (0.85 

eV/molecule). The presence of N (in pyridinic or substitutional sites) 
enhances therefore significantly the chemical reactivity of G/Ni(111) 

towards CO. 

Finally in presence of isolated defects, created by low energy Ne+ ions 
bombardment on single layer graphene supported on different substrates 

(polycrystalline Cu and Ni(111)), no CO adsorption occurs for defected 
G/Cu, while HREELS peaks form promptly for G/Ni(111). Two moieties, 
desorbing just above 350 K, are present under vacuum conditions after 

exposure at RT. The CO stretch frequencies and the ratio of their intensities 
indicate that they are due to chemisorbed CO at the G/Ni(111) interface 

close to the vacancies rather than at the defected G layer. The red-shift of 
the C1s binding energy indicates that in such regions detachment of the G 

layer from the substrate occurs. 

Amending of vacancies occurs for subsequent exposures, as demonstrated 
by the reduction of the adsorbed coverage in subsequent CO doses 

followed by annealing at 380 K, indicating that a Bouduard-like reaction 
takes place under the graphene cover. 

9:00am SS+EM+NS-ThM-4 Geometry of Cu Islands Buried Beneath the 
Surface of Graphite, A Lii-Rosales, Ames Laboratory and Iowa State 
University; S Julien, Northeastern University; Y Han, J Evans, Ames 
Laboratory and Iowa State University; K Wan, Northeastern University; 
Patricia A. Thiel, Ames Laboratory and Iowa State University 

Deposition of Cu on a sputtered graphite surface, in ultrahigh vacuum, can 
be manipulated to produce buried islands of metallic, multilayer Cu. The Cu 

islands are covered by a graphitic layer consisting of several graphene 
sheets. This layer drapes like a tarpaulin over the Cu islands. We have 

observed flat-topped islands as tall as 40 nm and as wide as 600 nm. One of 
the most striking features of island geometry is the fact that the slope of 
the tarpaulin at the sides of the islands is invariant over a wide range of 

island volumes. The variation of the ratio of island diameter to height as a 
function of island volume is far less regular in the experimental data, 
suggesting that kinetic limitations may play a role in determining this 

parameter. To investigate the physical forces responsible for the island 
geometries, we develop a model for island shape that incorporates the 
distortion energy of graphene, adhesion of Cu with graphitic surfaces, 

adhesion of graphene with graphite, and other parameters. The energy 
parameters involving Cu surfaces and Cu-carbon interfaces are derived 

from DFT calculations. The values and trends predicted by the model are 
discussed and compared with experiment. In particular, the model 

indicates that the slope of the island sides should be invariant, consistent 
with experiment. 

9:20am SS+EM+NS-ThM-5 Intercalation of O2 and CO between Graphene 
and Ru(0001) and the Role of Defects, Jory Yarmoff, T Li, University of 
California, Riverside 

Graphene (Gr) is a fascinating 2D material that is being widely being 
considered for applications in electronic devices due to its unique 
electronic and materials properties. Also, because of its high thermal 
stability and inertness, it is a promising candidate for use as a protection 
layer for metal substrates. Here, graphene films grown on Ru(0001) are 
exposed to O2 and 13CO and investigated with helium low energy ion 
scattering (LEIS). LEIS spectra collected at different scattering angles can 
distinguish between adsorbed and intercalated molecules. It is found that 
O2 and CO do not adsorb to the graphene surface but instead intercalate 
between Gr and the substrate. It is shown that a much lower annealing 
temperature is needed to remove intercalated oxygen than chemisorbed 
oxygen on bare Ru. During the thermal desorption, some of the graphene is 
etched away via chemical reaction forming gaseous CO or CO2. In addition, 
carbon vacancy defects are produced in the Gr films via 50 eV Ar+ 

bombardment. Isolated single carbon vacancy defects enable molecular 
adsorption at the defect sites and ease the overall intercalation of oxygen. 
The defects also improve the thermal etching efficiency of Gr by 
intercalated oxygen. When the defects are large enough to consist of open 
areas of bare substrate, oxygen dissociatively chemisorbs to Ru. 
Intercalated 13CO molecules sit upright with the O end on top, as on clean 
Ru. The CO molecules tilt, however, when the temperature is raised. This is 
likely due to increased vibrational amplitudes combined with the confining 
effect of the Gr film. 

9:40am SS+EM+NS-ThM-6 Organic-2D Transition Metal Dichalcogenide 
van der Waals Heterostructures, Yu Li Huang, Institute of Materials 
Research & Engineering (IMRE), A*STAR, Singapore; Z Song, National 
University of Singapore, Singapore; D Chi, Institute of Materials Research & 
Engineering (IMRE), A*STAR, Singapore; A Wee, National University of 
Singapore, Singapore 

The recent emergence of two-dimensional transition metal dichalcogenides 
(2D TMDs) has led to a rapid burgeoning of the field due to their novel 
electronic and optical properties with potential electronics/photonics 

applications. Organic materials, on the other hand, have exhibited great 
success in the field of flexible electronics, with an extensive number of 
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available molecules with tunable properties. Marrying the fields of organics 
and 2D TMDs will bring benefits that are not present in either material 

alone, enabling even better, multifunctional flexible devices. In parallel, the 
integration of 2D TMDs with selected organics is also a promising and 

controllable approach to modulate the properties of the TMDs without 
structural damage, thereby optimizing or even enhancing their desired 

properties for specific device applications. Central to the realization of all 
those applications is a fundamental understanding of the organic-2D TMD 

interface.1 

Here, we will present our recent studies on hybrid organic/2D TMD 
heterostructures.2-4 With combined experiments and theoretical modeling, 

the interfacial interactions between the organic layers and the TMDs as 
well as the energy level alignment at the interface are explored. The 

comprehensive understanding of the underlying physical mechanisms that 
govern the properties of organic-2D TMD interfaces at the atomic scale is 

of fundamental importance for developing this technique further for device 
applications. 

References:  
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Wong, Y. J. Zheng, M. Y. Li, L. J. Li, W. Chen, N. Koch, Y. L. Huang and A. T. S. 
Wee, ACS Nano, 2017, 11, 9128-9135. 

4. Y. J. Zheng, Y. L. Huang, Y. Chenp, W. Zhao, G. Eda, C. D. Spataru, W. 
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11:00am SS+EM+NS-ThM-10 Influence of Surface Functionalization on 
Surface Topography and Growth of Metal Oxide Structures on HOPG, 
Kathryn Perrine, M Trought, I Wentworth, C de Alwis, T Leftwich, Michigan 
Technological University 

Growth of heterogeneous catalysts, plasmonic and other nanostructured 
materials requires atomic level control and molecular level understanding 
of the growth of metals and metal oxides on surfaces. Surface 
functionalization of 2D materials can be used to promote selective 
nucleation of metal oxides with control over the deposition and growth. 
However, this requires an understanding of surface functionalization. This 
surface chemical functionalization can be combined with the atomic-level 
control of atomic layer deposition (ALD). ALD is a vapor deposition 
technique that utilizes self-limiting surface reactions to grow metal oxides, 
where the surface functional group initiates the first step in the deposition 
process. 

2D materials are ideal for selective functionalization that may not require 
lithography steps due to the fact that their sheets are in a stable 
configuration making them chemically unreactive. Highly oriented pyrolytic 
graphite (HOPG) is an ideal model of the graphene surface, a well-known 
2D material, which is comprised of sp2 hybridized aromatic hydrocarbon 
sheets. HOPG consists of stacked graphene sheets where the terraces of 
the carbon sheets are chemically unreactive in ambient conditions and 
their defects are highly reactive. Oxidation methods are used to produce an 
assortment of different functional groups on HOPG and can lead to 
different types of functionalities on the surface and its defects. 

We investigate how surface oxidative etching and functionalization 
influences the growth of metal oxide structures at tailored defects and 
functional sites on HOPG. Two different acids were used to etch the HOPG 
surface to produce functional groups resulting in different surface 
topographies. The functionalized HOPG was then exposed to 
trimethylaluminum and water, a well-known ALD reaction, to produce 
Al2O3 as a proof-of-concept to observe the growth of Al2O3 on both 
functional and defect sites. Vibrational spectroscopy (FTIR) and X-ray 
photoelectron spectroscopy (XPS) were used to measure surface 
functionalization and Al2O3 growth on HOPG. Field emission scanning 
electron microscopy (FESEM), atomic force microscopy (AFM) and Raman 
spectral imaging were used to image the changes in surface topography 
after etching and ALD deposition. Results indicate that the Al2O3 deposition 
and growth is dictated by the surface functionalization and topography. 
This suggests that understanding the effects of surface functionalization of 
2D materials is necessary for controlling the growth of metal oxide 
structures. 

11:20am SS+EM+NS-ThM-11 Impurity Induced Chemical Properties of BN 
on Rh(111) Studied by First Principle Calculations: A New Phase, Zahra 
Hooshmand1, D Le, T Rahman, University of Central Florida 

Hexagonal boron nitride (h-BN), an insulating layer of sp2 hybridized 
structure between B and N, grown on Rh(111) forms a Moiré pattern with 
elevated (rim) and depression (valley) areas. The valleys are circular dipole 
rings which act as trapping centers for the adsorption of nanoparticles and 

molecules [1]. The presence of the native carbon impurities in Rh 
potentially gives rise to the formation of hexagonal carbon rings under 

every other rim area as suggested by recent experiments [2] and could lead 
to new structures and novel chemistry. Here, on the basis of Density 

Functional Theory (DFT) simulations with dispersion corrections, we show 
that these rings tend to grow in a manner in which the center of each ring 
is placed on top of the Rh atom. These rings grow next to each other and 
form islands which are separated from each other by an equal distance 
while the BN monolayer remains untouched, i.e. there is no C-B or C-N 

bond formed. Our calculations show that while no broken bonds between 
B and N were observed, the increase in the concentration of carbon 

impurities will enhance the height modulations among different regions of 
BN Moiré pattern leaving the former valleys unchanged while decreasing 
their area. The new higher elevated regions show strong accumulation of 
charge and the lower elevated regions display depletion of charge. This 

gives rise to modification of dipole rings and results in altered adsorption of 
pentacene on BN. Our simulations of Scanning Tunneling Microscope (STM) 
images from this structure, are in good agreement with experimental data 
for number of rings from 3 to 5. However spatial density of states analysis 
shows that in the presence of 5 rings islands the gap in BN on the higher 
elevated regions vanishes and the band gap on these areas for 3 and 4 

rings islands reduces. The calculations of local variations in work function 
also show that these variations become more pronounced by growth of 
islands and reduces the work function of lower elevated regions in new 

phase. This results show that by control of the concentration of local 
impurities underneath the rim areas in BN, the chemical properties are 

modified and the monolayer could be engineered for interesting chemical 
reactions. [1] H. Dil et al., Science, 2008, 319, 1824-1826. [2] Koslowski et 

al. Private communication.  

This work was supported by National Science Foundation, Grant #NSF CHE-
1465105" 

11:40am SS+EM+NS-ThM-12 Texture of Atomic-layer Deposited MoS: A 
polarized Raman Study, Vincent Vandalon, A Sharma, E Kessels, Eindhoven 
University of Technology, The Netherlands, Netherlands; A Bol, Eindhoven 
University of Technology, Netherlands 

Advances in optical characterization techniques for 2D transition metal 
dichalcogenides (2D-TMDs) such as MoS2 are essential in the context of 
tailoring the texture and surface functionalization of these materials. 
Tailoring of the texture of synthesized MoS2 results in uniquely different 
material characteristics: out-of-plane fins of MoS2 have been 
demonstrated to possess excellent catalytic performance, most likely due 
to exposed catalytically active edge sites, whereas basal plane oriented 
MoS2 shows excellent electronic properties. The large impact of texture on 
the exhibited properties underlines the need for rapid and facile 
characterization of the texture and especially the angular grain orientation. 
So far, cross section high-resolution transmission electron microscopy (HR-
TEM) is widely employed to obtain insight into texture but it suffers from a 
limited throughput. On the other hand, Raman spectroscopy has been 
established as the go-to technique for the determination of e.g. film 
thickness of these TMDs. Here we will show that the angular grain 
distribution can also be determined using polarized Raman spectroscopy 

We have found that plasma-enhanced atomic-layer deposition (PE-ALD) of 
MoS2 allows control over the texture and results in out-of-plane fins or 
basal plane oriented material depending on the processing conditions using 
HR-TEM. To study the texture of the PE-ALD synthesized films with Raman 
spectroscopy, we have investigated the so far unknown impact of the 
angular grain distribution on the Raman response. The Raman response of 
nanocrystalline MoS2 was modeled for a range of different textures. This 
allowed us to determine the angular grain distribution from the peak ratio 
of the two dominant Raman peaks (i.e. the A1g and E2g modes). 
Furthermore, the modeling also showed that performing polarized variant 
of Raman spectroscopy is essential for the accurate determination of the 
angular grain distribution because of the additional information it provides. 
A systematic polarized Raman study into the evolution of the fraction of 
out-of-plane material with film thickness allowed us to gain insight into the 
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growth process. Moreover, the influence of a post-deposition high-
temperature anneal in a H2S atmosphere on the texture, known to yield 
improved material properties, was also investigated. To conclude, polarized 
Raman spectroscopy offers a rapid method to gain insight into the angular 
grain distribution of synthesized MoS2 and this approach can be readily 
extended to other MX2 materials. 
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