

Figure 2: Photoluminescence of ZnO infiltrated cylindrical PS-b-PMMA without a seed layer as a function of growth. All photoemission occurs at 335 nm (3.70 eV), blue-shifted from bulk ZnO at $370 \mathrm{~nm}(3.35 \mathrm{eV})$. Peak intensity occurs after three cycles of ZnO. No Defect States are present

Figure 1: Raman Scattering of ZnO infiltrated PS-b-PMMA Cylinders with 1x TMA seed layer. Peaks at 530cm-1 indicate Raman peaks due to the SiO2 background. The first and second longitudinal optical phonons are located at 590 cm 1and $1185 \mathrm{~cm}-1$, respectively. The absence of phonons in samples with less than five cycles of ZnO indicate isolated structures, and the absence of thin film structure. This means we can implement up to four cycles of ZnO and still have isolated nanostructures without bridging.

- Use of the Center for Nanoscale Materials and the Advanced Photon Source, both Office of Science user facilities, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02- 06CH11357. Additional funding by IARPA, (ARIADNE) under Contract D16P00002

