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8:00am AS+BI+SA+SS-ThM-1 In Situ Investigation of the Dynamic 
Transformations of Model Catalyst Surfaces using Ambient Pressure XPS, 
Iradwikanari Waluyo, Brookhaven National Laboratory INVITED 

In heterogeneous catalysis, the interaction between reactant molecules 
and the surface of the catalyst often causes changes in the surface 
composition and chemical state of the catalyst, which may result in 
changes in the reactivity of the catalyst. Using ambient pressure x-ray 
photoelectron spectroscopy (AP-XPS), these changes can be monitored in 
situ under close-to-realistic conditions. Unlike conventional XPS, which 
requires UHV conditions, AP-XPS measurements can be performed in the 
presence of gases at pressures of up to 100 Torr through the use 
differentially pumped analyzer, small analyzer entrance aperture, and x-ray 
transparent windows. Although AP-XPS measurements using lab x-ray 
sources are possible and becoming more common, experiments at modern 
synchrotron light sources have distinct and significant advantages including 
tunable photon energy, tightly focused beam, and better resolution. A 
general overview of the technique as well as recent experimental results 
will be presented. Examples shown include (1) the potassium-promoted 
reduction of Cu2O/Cu(111) by CO, in which the reduction of Cu+ to Cu is 
accelerated by the presence of K through the formation of surface 
carbonate species, (2) the surface segregation of Pt/Cu(111) model 
bimetallic catalyst in the presence of various reactant gases, and (3) the 
reduction of Cu2O/Pt/Cu(111) by H2. 

8:40am AS+BI+SA+SS-ThM-3 Observation of Oxygen Binding on PGM-free 
Electrocatalysts by Ambient Pressure XPS and XAS, Kateryna 
Artyushkova, University of New Mexico; M Dzara, S Pylypenko, Colorado 
School of Mines; P Atanassov, University of New Mexico 

The most promising class of PGM-free materials for oxygen reduction 
reaction (ORR) is based on graphene-like carbon containing nitrogen and 
transition metal (MNC). They show promise as replacement of Pt in two 
different technological platforms - alkaline exchange membrane fuel cells 
(AEMFCs) and proton exchange membrane fuel cells (PEMFC). It is well 
established that nitrogen coordination with metal in the carbon network of 
MNC materials is directly related to ORR activity; however, the exact 
nature of the active sites is still debated even after over 50 years of 
research. Understanding the specific roles of nitrogen and metal in the 
properties/activity/stability/durability of MNC-based catalytic materials is a 
prerequisite for the rational design of ORR electrocatalysts with improved 
performance. 

The key component in elucidating the relationship between the chemistry 
of active sites and activity is a better understanding of the formation of 
adsorbates, intermediates, and products during reactions occurring within 
the fuel cell. 

In situ monitoring reaction steps under realistic conditions in metal-free 
and metal-containing building blocks will shed light onto the reaction 
mechanism that is essential for developing active and durable PGM-free 
catalyst for ORR. 

We will report on AP-XPS analysis for series of electrocatalysts belonging to 
Fe-N-carbon families based on sacrificial support method (SSM) and Metal-
organic frameworks (MOF). The effect the nitrogen chemistry and the type 
of iron have on the oxygen binding was investigated by ambient pressure X-
ray Photoelectron Spectroscopy (XPS) and X-ray Adsorption Spectroscopy 
(XAS) under an O2 environment at operating temperature of the fuel cell. 
The effect of the relative abundance of different types of nitrogens, such as 
pyridinic, coordinated to iron and hydrogenated nitrogens (pyrrolic and 
hydrogenated pyridine) on the preference of oxygen binding is studied by 
high-resolution nitrogen photoelectron spectra. The role of metallic and 
atomically dispersed iron will be investigated by a combination of XAS and 
XPS. Linking differences in oxygen binding to the differences in the 
chemistry of the electrocatalysts are of ultimate importance for elucidating 
the oxygen reduction reaction mechanism. 

1. Artyushkova, K., et al., Oxygen Binding to Active Sites of Fe–N–C ORR 
Electrocatalysts Observed by Ambient-Pressure XPS. The Journal of Physical 
Chemistry C, 2017. 121(5): p. 2836-2843. 

9:00am AS+BI+SA+SS-ThM-4 In situ Monitoring of Electrochemically 
Generated Carbene by XPS, Pinar Aydogan Gokturk1 , S Donmez, Y 
Turkmen, B Ulgut, S Suzer, Bilkent University, Turkey 

Ionic liquids provide a platform for fundamental electrochemical studies in 
vacuum. In this present work, we report an in-situ X-ray photoelectron 
spectroscopic (XPS) investigation of N-heterocyclic carbene(NHC) 
generation from the electrochemical reduction of imidazolium based ionic 
liquids (ILs) through changes in oxidation state of nitrogen atoms. The IL 
serves as an electroactive material as well as the electrolyte in the cell 
between a Si substrate which is connected to the instrument ground and a 
gold wire connected to the sample holder for electrical connection. 
Through the course of the electrochemical reaction, the positive charge on 
imidazolium cation is neutralized to give free NHC as reflected by the 
distinct shifts in the N 1s and C 1s binding energies. The observations are 
further supported by colorful adduct formation of carbenes with CS2, 
reversible redox peaks in the voltammogram and the density functional 
theory calculations. The presented structure and XPS measurements can 
lead on understanding of the mechanism for various electrochemical 
reactions. 

9:20am AS+BI+SA+SS-ThM-5 The Influence of Water on the Ionic Liquid-
Vapor Interface, John Newberg, University of Delaware; M Shiflett, 
University of Kansas; A Broderick, Y Khalifa, University of Delaware 

Ionic liquids (ILs) have a wide array of applications in biotechnology, 
coatings, synthesis, separations, and energy sciences. Many of these 
processes involve either IL-solid or IL-vapor interactions and it is important 
we understand the fundamental interfacial properties of ILs on a molecular 
level. Due to the ubiquity of water and the hydrophilic nature of ILs, water 
can either be unintentionally present or often intentionally added to alter 
IL properties including density, viscosity, friction and electrochemical 
window. In this talk we will highlight our recent efforts examining the IL-
water vapor interface utilizing ambient pressure X-ray photoelectron 
spectroscopy (APXPS). APXPS allows for a molecular level assessment of 
the IL-vapor interface including a quantitative assessment of interfacial 
water concentration, moiety specific electronic environment changes, 
structural changes and obtaining adsorbate energetics. 

9:40am AS+BI+SA+SS-ThM-6 Ambient Pressure XPS Studies of Model N-C 
and Fe-N-C Catalysts Under Oxygen Environment, Michael Dzara, 
Colorado School of Mines; K Artyushkova, University of New Mexico; C 
Ngo, M Strand, J Hagen, S Pylypenko, Colorado School of Mines 

Producing inexpensive polymer electrolyte membrane fuel cells requires 
significant reduction in the amount of platinum group metal (PGM) oxygen 
reduction reaction (ORR) catalyst used. High surface area iron- and 
nitrogen-functionalized carbon (Fe-N-C) materials are a promising PGM-
free replacement. These catalysts are very heterogeneous, leading to 
difficulties in discerning contributions from various potential active sites 
and identifying the most active species.1 Techniques such as scanning 
transmission electron microscopy (STEM), energy dispersive x-ray 
spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS) provide 
structural and chemical information that can be correlated to ORR activity 
measured with electrochemical methods. Ambient pressure XPS (AP-XPS) 
and x-ray absorption spectroscopy (XAS) conducted in a humidified O2 
environment, at an elevated temperature, and with applied potential offer 
opportunities to study materials under in situ conditions to determine 
adsorbates, intermediates, and products during ORR steps.2,3 

In this work, model Fe-N-C catalysts are studied along with reference 
nitrogen-doped carbon (N-C) materials. Development of model catalyst 
materials with controlled morphology and speciation can simplify the 
elucidation of active sites. Micro-porous N-C nanospheres with high 
graphitic content were synthesized by a solvothermal treatment of 
resorcinol, formaldehyde, and ethylenediamine, and a subsequent 
pyrolysis in N2.4 Incorporation of Fe into the N-C nanospheres was carried 
out by wet-impregnation of various Fe precursors followed by a second N2 
pyrolysis. By varying synthetic parameters, a set of N-C and Fe-N-C 
nanospheres with diverse compositions and properties were produced. 
Differences in composition and structure were evaluated using STEM-EDS 
and XPS, demonstrating control over N and Fe quantity and speciation. 
Select N-C and Fe-N-C nanospheres were then characterized with in situ 
AP-XPS, and in the case of Fe-N-C nanospheres, in situ XAS. By 
understanding the ORR on these model Fe-N-C nanospheres, synthesis-
property-performance conclusions are drawn, guiding the development of 
highly active Fe-N-C catalysts. 
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1 A. Serov, K. Artyushkova, E. Niangar, C. Wang, N. Dale, F. Jaouen, M.-T. 
Sougrati, Q. Jia, S. Mukerjee, and P. Atanassov, Nano Energy 16, 293 
(2015). 

2 K. Artyushkova, I. Matanovic, B. Halevi, and P. Atanassov, J. Phys. Chem. C 
121, 2836 (2017). 

3 Q. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland, G. Wu, B. 
Barbiellini, A. Bansil, E.F. Holby, P. Zelenay, and S. Mukerjee, ACS Nano 9, 
12496 (2015). 

4 N.P. Wickramaratne, J. Xu, M. Wang, L. Zhu, L. Dai, and M. Jaroniec, 
Chem. Mater. 26, 2820 (2014). 

11:00am AS+BI+SA+SS-ThM-10 Real-time Photoelectron Spectroscopy 
Observation of Oxidation and Reduction Kinetics of Ni(111) Surface, Ryo 
Taga, S Ogawa, Y Takakuwa, Tohoku University, Japan 

Nitrogen contained in the air is oxidized and then harmful nitrogen oxide 
(NOX) is formed in the combustion chamber of engine. Accordingly, the 
exhaust gas which contains NOX is purified by catalysts. However, platinum 
group metals, whose prices are likely to rise by the depletion of resources 
in the future, are used as the catalysts, so the reduction of the amount 
used is an important matter for industrial and environmental fields. On the 
other hand, it has been already known that Ni has an effect to NOX 
reduction, but the its catalytic ability disappears when the Ni surface is 
oxidized. If O atoms on the Ni surface can be efficiently desorbed, Ni is 
expected as a catalyst for NO reduction. In the previous studies, some of 
researches have studied about reduction of oxidized Ni surfaces, but the 
relation between oxide reduction kinetics and behavior of O atoms has not 
yet been clarified. In this study, the oxidation and reduction kinetics on 
Ni(111) surfaces was investigated by real-time ultraviolet photoelectron 
spectroscopy (UPS). to investigate the amount of O atom adsorption and 
the changes of work function. 

The experiments were performed using UPS apparatus with base pressure 
of ~3×10-8 Pa. The Ni(111) surface was firstly cleaned by the Ar+ ion 
bombardment, and the annealed at 600℃. O2 gas (1×10-5 Pa) was directly 
introduced to UPS apparatus at the sample temperature of 100℃. After the 
end of the introduction of O2 gas, the sample heated up to and H2 gas 
(1×10-5 Pa) was introduced in order to investigate the Ni oxide reduction 
process. The photoelectron spectra were measured repeatedly each 72 s 
during oxidation and reduction. 

From the time evolution of O 2p photoelectron spectra, we obtained the O 
2p uptake curve and the change in work function. When O2 gas was 
introduced, O 2p intensity increases linearly, so it turned out that the 
oxidation of Ni(111) surfaces was a zero order reaction. After introduction 
of H2 gas, O 2p intensity decreases gently for about 500 s and then 
decreased rapidly. On the other hand, the work function slightly increased 
and then rapidly decreased. The work function reaches the same value on 
the clean Ni(111) surface. Therefore, Ni oxide can be reduced completely 
using H2 gas. 

These changes after introduction of H2 gas can be divided into two areas. In 
the first area, O atoms are drawing from subsurface because of slight 
increase of work function. In the second area, then, it is suggested that the 
reduction progresses and the clean Ni surface area enlarges as like to island 
growth. In the symposium, we will discuss the reduction process of the 
oxidized Ni surface by NO gas. 

11:20am AS+BI+SA+SS-ThM-11 Comparison of Initial Oxidation Kinetics 
between p- and n-type Si(001) Surfaces Studied by Real-time 
Photoelectron Spectroscopy, Yuki Sekihata, S Ogawa, Tohoku University, 
Japan; A Yoshigoe, JAEA, Japan; R Taga, Tohoku University, Japan; S 
Ishidzuka, National Institute of Technology, Akita College, Japan; Y 
Takakuwa, Tohoku University, Japan 

An oxidation reaction is the “trade” of electrons between oxygen and other 
materials, therefore it is thought that there is a difference in the oxidation 
kinetics on between p-type and n-type Si substrates. In the previous 
researches about the kinetics of the thermal oxidation of Si, the oxidation 
rate have not taken account of the difference of conduction type because 
the thermal oxidation was performed in high temperature region above 
600℃ named intrinsic region where the intrinsic carrier concentration 
becomes comparable to the donor or acceptor concentration. On the other 
hand, oxidation temperature becomes lower to form thin oxide films below 
1nm. Therefore, we believe that the difference of conductivity affects an 
oxidation kinetics on the Si(001) surfaces, but there is no oxidation reaction 
models that takes into account the difference of conductivity. In this study, 
we investigated the oxidation reaction kinetics on p- and n-type Si surfaces 
using real-time ultraviolet photoelectron spectroscopy. 

The samples for oxidation were p-Si(001) and n-Si(001) surfaces. The 
dopants were Boron and arsenic for p- and n-type substrates, respectively. 
Their density of dopants were approximately 1018 atoms/cm3 so extrinsic 
region can be kept in the high temperature region even below 700℃. 
These samples were oxidized using O2 gas at the pressure of 1.0×10-5 Pa. 
During the oxidation reaction, the photoelectron spectra were measured 
repeatedly, therefore time evolution of the amount of oxygen adsorption, 
work function, and band bending can be investigated. 

In the room temperature oxidation, it is found that oxidation reaction 
coefficient on n-Si(001) is larger than that on p-Si(001). To clarify the 
reasons, we focus to the changes of work function due to the formation of 
dipole layer. The work function of the n-Si(001) surface shows negative 
value but p-Si(001) is positive value. From this result, we can estimate the 
adsorption positions of O atoms. O atoms have a negative charge in the 
bond of Si-O, so it can be assumed that oxygen is placed on the n-Si(001) 
surfaces, but it is subsurface in case of the p-Si(001) surface. In case of n-
Si(001) substrates, the doped electrons spill out into the surface because 
many electrons exist in the substrate. As the result, oxidation reaction is 
promoted in the n-Si(001) surface. From these results, we found that there 
is a difference of oxidation kinetics depending on the conductivity. In the 
presentation, we will show also the difference of oxide states between 
them. 

11:40am AS+BI+SA+SS-ThM-12 Co-Pyrphyrin on Cu2O(111) and TiO2(110): 
Properties and Stability under Near Operando Conditions, Zbynek 
Novotny, W Zabka, M Hotz, D Leuenberger, University of Zurich, 
Switzerland; L Artiglia, F Orlando, M Ammann, Paul Scherrer Institut (PSI), 
Switzerland; J Osterwalder, University of Zürich, Switzerland 

The pyridine-based macrocycle Co-pyrphyrin (Co-Pyr) is a promising 
molecular water reduction catalyst recently synthesized at the University of 
Zurich [1]. We investigated Cu2O(111) and TiO2(110) substrates covered 
with a complete monolayer of Co-Pyr at pressures spanning from ultra-high 
vacuum (UHV) up to near ambient pressures of 1 mbar of water vapor. To 
study the surface photovoltage (SPV) effect, samples were illuminated with 
UV laser light through the electron spectrometer lens system. Both under 
UHV and water pressures up to 1 mbar, SPV-induced shifts of the order of 
ΔEk = +120 meV were observed in case of Cu2O(111), while for TiO2(110), 
much smaller SPV shifts of -0.12 meV were observed. X-ray absorption 
spectroscopy (XAS) of the Co L3-edge in dependence of illumination and 
water exposure was used to monitor the electronic structure of the Co 
metal center of Co-Pyr molecules. Comparison to simulated XAS spectra 
reveals that on the TiO2(110), the Co centers partially transform from a +2 
to +1 oxidation state upon exposure to water, while on the Cu2O(111), the 
Co remains in the +2 oxidation state irrespective of the water exposure. 
Our measurements provide insights into the stability and behavior of the 
Co-Pyr molecules studied under near operando conditions, further 
stimulating the use of these molecular catalysts in the next-generation of 
solar fuel cells. 

[1] Joliat, E et al., Dalton Transactions 2016,45 (4), 1737-1745. 
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