Thursday Morning, November 2, 2017

Fundamental Discoveries in Heterogeneous Catalysis Focus Topic

Room 24 - Session HC+SA+SS-ThM

Mechanisms and Reaction Pathways in Heterogeneously Catalyzed Reactions

Moderator: David Payne, Imperial College London

8:00am HC+SA+SS-ThM-1 Effects of Phosphorus and Alkyl Substituents on C-H, C-C, and C-O Bond Rupture within Carboxylic Acids on Ru(0001), SiWei A. Chang, D Flaherty, University of Illinois at Urbana-Champaign Transition metal phosphide (TMP) catalysts are selective towards C-O bond rupture during hydrodeoxygenation reactions used to upgrade bio-oil. However, the manner in which bond rupture mechanisms and intrinsic barriers (i.e., C-H, C-C, and C-O bond) differ between transition metals and TMP catalysts are not well understood. In this study, a phosphorus (P) modified Ru(0001) surface is created using sequences of PH₃ adsorption and annealing treatments followed by Auger electron spectroscopy to determine the P:Ru ratio. Synthesized P_{0.4}-Ru(0001) surfaces have a (r7xr7) low energy electron diffraction pattern and appear to resemble the (111) facet of bulk Ru₂P materials. The results from temperature programmed desorption of CO and NH₃ demonstrate that the addition of P atoms to Ru(0001) decreases the binding energy of CO and NH₃ by ~12 kJ mol⁻¹ compared to Ru, suggesting that P atoms decrease the extent of electron exchange between Ru surfaces and adsorbates (i.e., CO and NH-3).

Results from temperature programmed reaction (TPR) of C1-C4 carboxylic acid decomposition on Ru(0001) and P_{0.4}-Ru(0001) surfaces indicate that both P atoms and the length of alkyl substituents on carboxylic acids (i.e., R = H, CH₃, CH₂CH₃, and CH₂CH₂CH₃) alter the intrinsic activation energy (E_a) of bond ruptures. On both surfaces, TPR and reactive molecular beam scattering (RMBS) results are consistent with carboxylic acid decomposition mechanism, that involves the reaction of carboxylate intermediates to form alkyl surface species with either CO (by C-O bond rupture followed by C-H/C-C bond rupture) or CO₂ (by direct C-H/C-C bond rupture). The addition of P atoms to Ru(0001) increases Ea values for the rupture of all bonds (i.e., C-O, C-H and C-C bonds) by 5-50 kJ mol⁻¹ and increases also the ratio of CO to CO₂ production (in the case of formic acid and acetic acid decomposition). In addition, P atoms weaken the linear correlation that exists between E_a for C-C and C-H bond rupture and the homolytic bond dissociation energies (BDE) of the involved bonds (e.g., R-COOH), thereby decreasing the strength of the correlation from near parity on Ru(0001) (i.e., slope m = 1) to moderate changes with BDE on P_{0.4}-Ru(0001) (i.e., slope m = 0.2). The RMBS results from formic acid in the presence of P atoms show a higher production of CO than CO₂, which reflects the catalytic consequences of the differences between the C-H and C-O bond rupture energy barriers on P_{0.40}-Ru(0001) and those for Ru(0001). Collectively, these results suggest that P atoms alters the production selectivity of CO and CO₂ through a greater increase in the energy barriers of C-O bond relative to C-H/C-C bond rupture.

8:20am HC+SA+SS-ThM-2 Monitoring Cu(111) Restructuring under Elevated CO Pressures via Polarization Dependent Infrared Spectroscopy, *Christopher Kruppe, M Trenary*, University of Illinois at Chicago

Recently it was shown that a Cu(111) surface will reconstruct to form nanoclusters when exposed to 0.1 – 100 Torr of CO.¹ We present the use of polarization dependent - reflection absorption infrared spectroscopy (PD-RAIRS) to monitor the Cu(111) restructuring in real time. Under 10 Torr of CO, PD-RAIR spectra display a peak for CO on top of Cu atoms. Scans were taken periodically and displayed new peaks related to CO bound to the nanoclusters that grow over a period of 30 minutes. Spectra obtained at 10 Torr and 300 K show that the creation of the Cu nanoclusters is correlated with an increase in intensity of these C-O vibrational features, which are only visible due to removal of gas phase CO features from the RAIR spectra. Dissociation of H₂O in UHV occurs on the nanoclusters, which is negligible on unreconstructed Cu(111). Previously the splitting of H₂O was thought to be a geometric effect caused by the nanoclusters as under UHV conditions CO does not adsorb on Cu(111) at room temperature. However, after exposing Cu(111) to 10 Torr of CO at room temperature for 30 minutes strong C-O vibrations are observed upon evacuation of the IR cell. In UHV, the H₂O partial pressure is increased in the IR cell to 2 \times 10⁻⁸ Torr and flowed over the reconstructed Cu(111) crystal. The RAIR spectra indicates Thursday Morning, November 2, 2017

there is a reactive CO species that interacts with H_2O to create formaldehyde. This is further confirmed by observing formaldehyde with temperature programmed desorption following H_2O exposure. Auger electron spectroscopy confirms the presence of oxygen on the Cu(111) surface after water exposures in the IR cell. Detailed interpretation of the data requires consideration for the formation of Fe-carbonyls, which can be present in the CO bottle, or produced in the reaction cell. The possibility of Fe as the cause for the CO bound in UHV will be presented.

1. Eren, B.; Zherebetskyy, D.; Patera, L. L.; Wu, C. H.; Bluhm, H.; Africh, C.; Wang, L.-W.; Somorjai, G. A.; Salmeron, M. Activation of Cu(111) Surface by Decomposition into Nanoclusters Driven by CO Adsorption. *Science* **2016**, *351*, 475 LP - 478.

8:40am HC+SA+SS-ThM-3 Thermal and Plasma Heterogeneous Catalysis Compared: CO₂ and Hydrocarbon Dry Reforming, *Q* Huang, *D* Zhang, Center of Interface Dynamics for Sustainability, Chengdu, PR China, China; *E Schuler, M Ronda Lloret, G Rothenberg, N Shiju,* van 't Hoff Institute for Molecular Sciences, Amsterdam, The Netherlands, Netherlands; *Aart Kleyn*, Center of Interface Dynamics for Sustainability, PR China, China INVITED

Endothermic catalytic reactions require operation at elevated temperatures. The heating required is usually obtained by combustion of hydrocarbons and contributes to CO₂ emission. Instead electricity obtained in a sustainable should drive the reaction. In addition, it is desirable that the energy transfer involved is done in a bond specific manner. Plasma excitation and dissociation of molecules can serve this purpose. In plasma, all molecular degrees of freedom are not in equilibrium and dissociation of CO₂ can be realized much more efficiently than in thermodynamic equilibrium. There is a preferential vibrational excitation of CO₂.

In Chengdu we use a plasma chemical reactor with mass spectroscopy, infrared spectroscopy, optical emission spectroscopy and a Langmuir probe to study the characteristics of the plasma, reaction products and the catalyst. In Amsterdam we use a thermal reactor and gas chromatography to study reaction products. The reactions are carried out at pressures of several hundreds of Pa up to atmospheric in Ar buffergas. Catalysts are prepared in the usual way.

The simplest reaction studied in the plasma reactor is the dissociation of CO_2 into CO and O_2 . We find energy efficiencies higher than 45%, indicating that the system is not in thermodynamic equilibrium and plasma favors vibrational excitation to translational heating. Adding a catalyst like AgO or NiO on Al₂O₃ does not enhance the yield. However, a purely metallic catalyst does significantly enhance the yield.

Optical emission spectroscopy shows that the radiofrequency (RF) and microwave (MW) plasma behave quite different. In the MW plasma predominantly emission from the C_2 Swann-band is seen, whereas the RF plasma shows mainly chemiluminescence from excited CO. This is due to a different electron excitation mechanism.

In the case of dry reforming of CH₄ with CO₂ in the plasma reactor we find that addition of an oxidic catalyst does not enhance the yield of CO + H₂. In the case of dry reforming of butane (C₄H₁₀) to yield butene (C₄H₈), plasma reforming with or without catalyst does shows only small conversion. Mainly cracking of butane into C₂H_x is seen and polymerization. However, running the same reaction under high temperature conditions in a thermal reactor yields a satisfactory conversion. A Co based catalyst has the best performance.

These studies allow us to obtain mechanistic information on the conversion of simple molecules, pretreated by plasma, on various catalysts. We are exploring to what extend direct Eley-Rideal reactions are relevant in the plasma reactor. This reaction mechanism is very unlikely under thermal conditions.

9:20am HC+SA+SS-ThM-5 Imaging the Molecular Origins of Symmetry Breaking on Well-defined Surfaces, Amanda Larson, R Hannagan, E Sykes, Tufts University

Understanding the interaction of prochiral reactants with chiral modifiers on surfaces is a key step towards controlling heterogeneous enantioselective catalysis. We have chosen a simple model system composed of interacting chiral propylene oxide and propene molecules on a Cu(111) surface that is amenable to both scanning probe and desorption studies. Low temperature scanning tunneling microscopy (STM) enables an unprecedented level of spatial resolution of the enantioselective moleculemolecule interactions and their dynamics. STM imaging of propylene oxide and propene molecules at 5 K reveals that both molecules, when in isolation on the surface, behave as molecular rotors. Furthermore, the

1

Thursday Morning, November 2, 2017

chirality of individual propylene oxide molecules can be discerned from the STM images of the rotating molecule. While propene is achiral in the gas phase it become chiral when bound to surfaces and STM also allows us to distinguish between its surface-bound enantiomers. When studied separately, repulsive forces between both sets of molecules disperse them on the surface at low coverages. However, when co-dosed we observe an attraction between propylene oxide and propene and they form complexes in which their rotation is inhibited. Temperature programmed desorption measurements are used to quantify these chiral modifier-molecule interaction strengths. Finally, the geometry of individual propene and propylene oxide molecules can be determined within the complexes and 1:1 chiral interactions deciphered.

11:00am HC+SA+SS-ThM-10 A Surface Science Approach for New Heterogeneous Catalyst, *Ib Chorkendorff*, Technical University of Denmark, Denmark INVITED

First, we shall discuss how surface science and mass-selected nanoparticles can be used to make efficient model systems for heterogeneous catalysts. We shall demonstrate how mass-selected nanoparticles of CuZn alloys can be used to elucidate the dynamics of the methanol synthesis catalysts. The produced nanoparticles will be compared to the conventional CuZnAl at 1 bar for synthesizing methanol from CO₂ and H₂ [1, 2, 3]. The methanol synthesis on CuZn will also be discussed with respect to our recent findings of using alloys of NiGa for methanol synthesis [4]. The use of mass-selected nanoparticles will be further demonstrated for electrochemical Oxygen Reduction Reaction, which is really the limiting reaction in Proton Exchange Membrane Fuel Cells. Here we have found entirely new classes of electrocatalysts by alloying Pt with early transition metals [5] or the lanthanides [6]. We have also shown that it is possible to make mass-selected nanoparticles of these alloys with very good activities [7] and PtGd alloys [8]. Finally, we shall also discuss how planar surface science can be used to identify new catalysts for ammonia oxidation. We shall demonstrate how Copper deposited on Ruthenium can enhance the activity substantially and give rational explanations for this enhancement which also can be transferred to high area catalysts used for diesel exhaust treatment [9].

References

1. S. Kuld,...... I. Chorkendorff and J. Sehested, Angew. Chemie 53 (2014) 1.

2. C. Holse,...., I. Chorkendorff, S. Helveg, J. H. Nielsen, J. Chem. Phys. 119 (2015) 2804-2812.

3. S. Kuld,..... I. Chorkendorff, J. Sehested, SCIENCE 352 (2016) 969-974.

4. F. Studt,, I. Chorkendorff, and J. K. Nørskov, Nature Chemistry. 6 (2014) 320.

5. J. Greeley, I. Chorkendorff, J. K. Nørskov, Nature Chemistry. 1 (2009) 522.

6. M. Escudero-Escribano,, I. Chorkendorff, SCIENCE 352 (2016) 73-76.

7. P. Hernandez-Fernandez, I. Chorkendorff, Nature Chemistry 6 (2014) 732-8.

8. A. Velázquez-Palenzuela,.....I. Chorkendorff, J. Catal. 328 (2015) 297-307.

9. D. Chakraborty,, I. Chorkendorff, Accepted Angew. Chemie. (2017).

11:40am HC+SA+SS-ThM-12 Chemisorption and Oxidation of H_2 on IrO₂(110), *Tao Li*, *Z Liang*, University of Florida, Gainesville; *M Kim*, *A Asthagiri*, The Ohio State University; *J Weaver*, University of Florida, Gainesville

Understanding the interactions of hydrogen with IrO2 surfaces is central to improving applications of electrocatalysis as well as exploiting the highreactivity of IrO2 for promoting methane activation. In this talk, I will discuss our recent investigations of the dissociative chemisorption and oxidation of H₂ on stoichiometric and oxygen-rich IrO₂(110) surfaces. We find that H_2 dissociation is highly facile on s-IrO₂(110), with more than 90% of a saturated $H_{\rm 2}$ layer dissociating below 225 K during temperatureprogrammed reaction spectroscopy (TPRS). We observe only H₂O desorption in a broad TPRS peak from about 400 to 780 K after generating low H_2 coverages on s-IrO₂(110) at about 90 K. At high H_2 coverages, we also observe small H_2 desorption peaks at 200 and 530 K which we attribute to molecular and recombinative desorption processes, respectively. We present evidence that H₂ dissociation on IrO₂(110) occurs through a mechanism wherein H_2 $\sigma\text{-complexes}$ adsorbed on the coordinatively-unsaturated (cus) Ir atoms serve as precursors for H₂ dissociation. We show that oxygen atoms adsorbed on the cus-Ir sites, socalled on-top O-atoms, hinder H₂ dissociation on IrO₂(110), while also facilitating H₂O desorption and promoting H-atom transfer from bridging Oatoms to on-top O-atoms. I will also discuss the results of density functional

theory calculations of H_2 dissociation and initial steps of H_2O formation on stoichiometric and O-rich IrO₂(110).

Author Index

Bold page numbers indicate presenter

- A -Asthagiri, A: HC+SA+SS-ThM-12, 2 - C -Chang, S: HC+SA+SS-ThM-1, 1 Chorkendorff, I: HC+SA+SS-ThM-10, 2 - F -Flaherty, D: HC+SA+SS-ThM-1, 1 - H -Hannagan, R: HC+SA+SS-ThM-5, 1 Huang, Q: HC+SA+SS-ThM-3, 1 — K — Kim, M: HC+SA+SS-ThM-12, 2 Kleyn, A: HC+SA+SS-ThM-3, 1 Kruppe, C: HC+SA+SS-ThM-2, 1 — L —

Larson, A: HC+SA+SS-ThM-5, **1** Li, T: HC+SA+SS-ThM-12, **2** Liang, Z: HC+SA+SS-ThM-12, 2 — R —

Ronda Lloret, M: HC+SA+SS-ThM-3, 1 Rothenberg, G: HC+SA+SS-ThM-3, 1 -- S --Schuler, E: HC+SA+SS-ThM-3, 1 Shiju, N: HC+SA+SS-ThM-3, 1 Sykes, E: HC+SA+SS-ThM-5, 1 -- T --Trenary, M: HC+SA+SS-ThM-2, 1 -- W --Weaver, J: HC+SA+SS-ThM-12, 2 -- Z --

Zhang, D: HC+SA+SS-ThM-3, 1