Materials Science and Technology

Supplementary material

$$
\begin{equation*}
\theta(t)=\frac{\lambda_{\mathrm{c}}}{L} \sqrt{\frac{J \beta_{0}}{n_{0}} t} \tag{1}
\end{equation*}
$$

With θ - the surface coverage, λ_{c} - the reaction front width, L - total length of the pores, n_{0} - the substrate surface sites density, J - the flux of molecules to surface, β_{0} - the sticking coefficient and t - the time.

$$
\begin{equation*}
\lambda_{c}=\frac{4}{\bar{s}} \sqrt{\frac{2}{3 \beta_{0}}} \tag{2}
\end{equation*}
$$

Where \bar{s} is the surface area to void volume ratio.
References

1. Ma et al., Adv. Mater. Interfaces, 2016, 3, 1600564; DOI: 10.1002/admi. 201600564
2. Wang et al., Journal of Power Sources, 2013, 233, 1-5; DOI: 10.1016/j.jpowsour.2013.01.134
3. Gao et al., Materials Today, 2020, 40, 140-159; DOI: 10.1016/j.mattod.2020.06.011
4. Szmyt et al., Chem. Mater. 2022, 34, 203-216; DOI: 10.1021/acs.chemmater.1c03164

Materials Science and Technology

Figure 1 Cross-section topography of porous Si substrate coated with SnO2 by ALD. The pores opening and the holes depth are about 2 and $100 \mu \mathrm{~m}$, respectively, providing an aspect ratio of 50 . Pictures were acquired by scanning electron microscope (SEM) employing in-beam back scattered electron sensor.

