Atomic Layer Deposition of Interface-Engineered Li₄Ti₅O₁₂: Toward High-Capacity 3D Thin-Film Batteries

Jan Speulmanns^{a*}, Sascha Bönhardt^a, Malte Czernohorsky^a, Wenke Weinreich^a

^a Fraunhofer Institute for Photonic Microsystems IPMS, Center Nanoelectronic Technologies (CNT), An der Bartlake 5, Dresden, 01109, Germany

Figure 1: LTB pulse time-dependent GPC for an ALD process fabricating $Li_4Ti_5O_{12}$ thin films.

Figure 3: C-rate performance of ALD LTO thin films with different thicknesses.

Figure 5: Cross-section SEM micrograph of the structured Si substrate for conformality tests.

Figure 2: TEM micrograph of the battery layer stack with a 100-cycle AIO_x interlayer.

Figure 4: Footprint capacity for planar and 3D LTO films with a thickness of 50 nm.

Figure 6: Cross-section SEM micrograph of the bottom of a hole with a 10:1 aspect ratio.