## **Development of ALD gate dielectrics for TMD nanosheet FETs**

Tsung-En Lee<sup>1</sup>, Brook Chao<sup>2</sup>, Yunyan Chung<sup>1</sup>, Yuan-Chun Su<sup>1</sup>, Bo-Heng Liu<sup>3</sup>, Chien-Ying Su<sup>3</sup>, Chi-Chung Kei<sup>3</sup>, Chao-Ching Cheng<sup>1</sup>, Pinyen Lin<sup>2</sup> and Iuliana P. Radu<sup>1</sup>\* <sup>1</sup>Corporate Research, Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan <sup>2</sup>Pathfinding, Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan <sup>3</sup>Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan \*e-mail: iradu@tsmc.com

## Abstract

Superior electrostatics control of monolayer (1L) TMDs holds great potential in advancing the scaling of nanosheet (NS) transistors in advanced technology nodes [1]. One critical aspect is to achieve a conformal dielectric layer on TMD NS channel using atomic layer deposition (ALD) [2]. The main challenge in achieving high-quality gate dielectrics is forming a good nucleation layer on the dangling bond-free TMD interface. This study successfully used the ALD technique to form a uniform AlO<sub>x</sub> thin film on 1L-MoS<sub>2</sub> without damaging the material. Furthermore, good performance of MoS<sub>2</sub> NS nFET is also successfully demonstrated. Experiment

To improve surface nucleation in the  $AlO_x$  layer on TMD, a low ALD temperature and high dosage (HD) of TMA precursor are required. During ALD, the TMA pulse time is extended with the pump valve off to increase surface dosage. After preparing the 1L-MoS<sub>2</sub> channel on  $SiN_x/Si$ , a top-gated FET was fabricated using HDALD-AlO<sub>x</sub> at 90 °C (30 cycles) and standard ALD-HfO<sub>x</sub> at 200 °C (50 cycles). The gate metal and source/drain contacts were made of Au. **Result and discussion** 

The AFM images in Fig. 1(a) shows that the HD process in ALD improves the coverage of the AlO<sub>x</sub> film on 1L-MoS<sub>2</sub> to 89% with a lower RMS (0.32 nm). Therefore, conformal AlO<sub>x</sub> interfacial layer of 2.8 nm is revealed in MoS<sub>2</sub> top-gated nFET, as TEM image shown in Fig. 1(b). Moreover, the HD-AlO<sub>x</sub> ALD process is applied to the 1L-MoS<sub>2</sub> sheet structure (see TEM images in Fig. 2). Good conformality of the  $AlO_x$  interlayer and  $HfO_x$  film, wrapping around 1L-MoS<sub>2</sub> sheet, is achieved without any pinholes. Good transfer characteristics is displayed in Fig. 3. This demonstrates that high-dose ALD AlO<sub>x</sub> can be used as the dielectric interlayer in 1L-MoS<sub>2</sub> NS devices. A large scaling window in HD AlO<sub>x</sub> and HfO<sub>x</sub> thickness allows for further enhancement of device performance.

## Conclusion

We successfully explored the ALD approach of forming a conformal gate dielectric bilayer on monolayer MoS<sub>2</sub> and demonstrated good NS nFET characteristics. A uniform ALD-AlO<sub>x</sub> thin film was achieved through enhanced physical adsorption at a lower temperature (90 °C) and higher TMA precursor concertation. This facilitated subsequent HfOx deposition at a higher temperature (200 °C) without damaging the MoS<sub>2</sub>. The proposed method provides a practical pathway to integrate ALD gate dielectric into TMD nanosheet devices.

## Reference

[1] S.-K. Su *et al.*, Small Structures, 2.5, 2000103 (2021). [2] Yun-Yan Chung et al., IEDM 34.5.1 (2022).

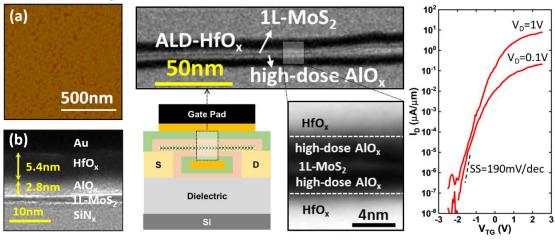



Fig. 1. (a) AFM of highdose ALD AlOx/ 1L-MoS<sub>2</sub>/ sapphire. (b) TEM images of Au/ HfOx/ highdose AlOx/ 1L-MoS2 on SiN<sub>x</sub>/Si substrates.

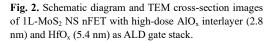



Fig. 3. I<sub>D</sub>-V<sub>G</sub> curves of 1L-MoS<sub>2</sub> NS nFET with high-dose AlO<sub>x</sub> and HfOx gate dielectrics.