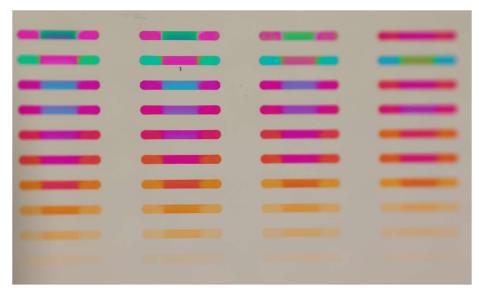
Multi Cycle and Material Deposition for Spatial Atomic Layer Deposition Process

Atilla C. Varga,^{a,*} Matthias Carnoy^a, Mette Funding la Cour^a, Maksym Plakhotnyuk^a, Ivan Kundrata^a and Julien Bachmann^{a,b}

^a ATLANT 3D, Taastrup, Denmark, ^b Friedrich-Alexander Universität Erlangen-Nürnberg, Germany


Spatial Atomic Layer Deposition (sALD) offers a unique opportunity for localized deposition due to its physical separation and isolation of precursor and co-reagent dosing.^[1] While simple in theory, due to well-developed examples of sALD, in practice miniaturization of sALD requires substantial effort into the creation of suitable micro-nozzles.^[1] Uniquely, ATLANT 3D has developed proprietary sALD micronozzles, called microreactor Direct Atomic Layer Processing - μ DALPTM.

The μ DALPTM process undergoes the same cyclic ALD process but is only done in a spatially localized area.^[2] The microreactor or micronozzle confines the flows of gases used for ALD within a defined μ m-scale centric area on the substrate, to deposit the desired material. Similarly, to spatial ALD, the creation of this monolayer then hinges on the movement of the substrate.^[1,2]

Since sALD and the μ DALPTM process are based on physical separation, it is theoretically compatible with any ALD material process however requires development as ALD processes are highly tool dependent.^[3] As such, the material capabilities can match traditional ALD and exceed other patterning techniques, such as lithography, which can be costly and time-consuming, especially for rapid prototyping required for innovation.^[4,5]

sALD using the μ DALPTM technology also vastly increases the efficiency and innovation potential of material and precursor development. Using a small amount of precursor (due to low flow rates required) multiple film thicknesses can be deposited onto a single wafer used to calculate a processes growth rate within only a few hours, compared to days for a traditional ALD process (**Fig 1**). Multiple depositions can also be performed at varying temperatures for the calculation of temperature dependent growth rate (for "ALD window"), and film characteristics all within a few hours on a single sample. The μ DALPTM process has also been used to demonstrate the selective deposition of different materials on the same substrate without the need for masking shown in **Fig 2**. By facilitating the more efficient growth of the ALD processes, μ DALPTM sALD can help to enable continued and more efficient growth of the ALD industry and the development of new and innovative technologies. Multi-material sALD also enables unseen potential for versatile patterning and complex geometry formation, applicable to efficient, iterative, and low-cost device and sensor development.

- [1] Poodt P., JVSTA., **2012**, 30, 010802
- [2] Kundrata I., et al., Small Methods., 2022, 6 (5), 2101546
- [3] Barry, S. T. Chemistry of Atomic Layer Deposition; De Gruyter
- [4] Kundrata I., et al., ALD/ALE 2022 [Int. Conf.], 2022
- [5] Plakhotnyuk M, et al., ALD/ALE 2022 [Int. Conf.], 2022

Figure 1. Photograph of a set of TiO₂ lines deposited using μ DALPTM at differing numbers of cycles (ranging from 100-5000) on a 200 nm SiO₂ substrate. TiO₂ was deposited using TTiP and water.

Figure 2. Photograph of 200 nm SiO₂ silicon wafer substrate with 3 different deposited materials using μ DALPTM technology in < 5hr and done without any masking or additional processing. Thin films from left to right are Pt, TiO₂ and Al₂O₃ using MeCpPtMe₃ + Ozone, TTiP + water and TMA and water respectively. The circular pattern at the top is a purge region used to flush out precursor between material switching.