Supplemental

In-situ Half-Cycle Study of High Purity $\mathbf{H}_{2} \mathbf{O}_{2}$-based $\mathbf{H f O}_{2}$ Atomic Layer Deposition on TiN Substrate

Jin-Hyun Kim et al.

Figure 1. HZO film properties after deposition using $\mathrm{H}_{2} \mathrm{O} . \mathrm{O}_{3}$, and $\mathrm{H}_{2} \mathrm{O}_{2}$. (a) Growth rate of HZO using TDMA-Hf/Zr supercycle at $250^{\circ} \mathrm{C}$. (b) Density of HZO deposited at $250{ }^{\circ} \mathrm{C}$ evaluated by XRR. (c) Wet etch rate of HZO in 200:1 HF.

Figure 2. (a) Differential Half-cycle study of ALD cycle using TDMA-Hf and $\mathrm{H}_{2} \mathrm{O}_{2}$ with in-situ RAIRS system. $\mathrm{H}_{2} \mathrm{O}_{2}$ spectra show strong intensity in OH bending modes, increasing with $\mathrm{H}_{2} \mathrm{O}_{2}$ exposure and decreasing after TDMA-Hf cycle OH bending modes. Moreover, the initial cycle shows the precursor reacting with oxidant and the reaction between the substrate surface and the TDMA-Hf and $\mathrm{H}_{2} \mathrm{O}_{2}$. After 50 cycles, the surface reaction disappears, and the ALD reaction becomes dominant. Furthermore, using differential spectra, the growth of a peak around $880 \mathrm{~cm}^{-1}$ is observed in initial cycles but disappears quickly after a few cycles, which might be showing the interface formation. (b) Accumulation and differential spectra of ALD full cycles up to 50 cycles. By increasing the cycles, the increase of Hf-O bond is observable, which can be used to compare the bonding density with other oxidants.

