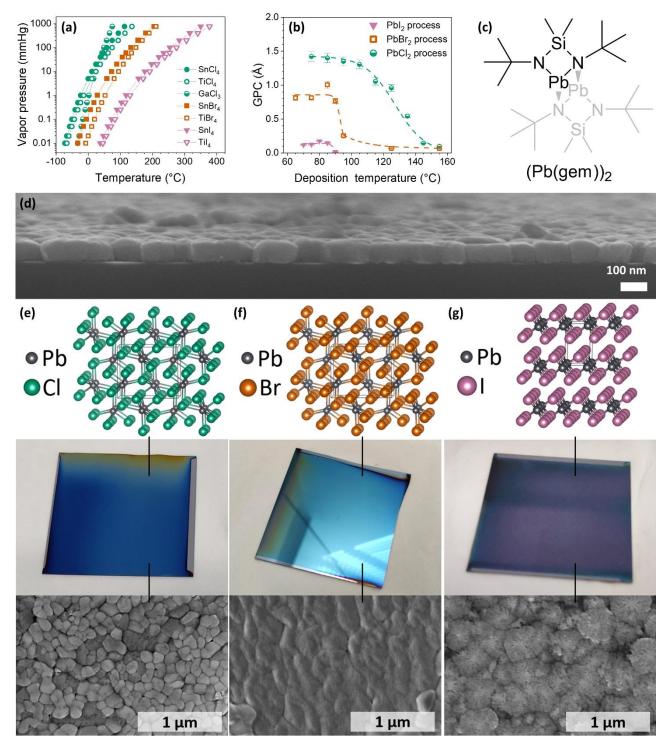
Supplemental Document


Atomic Layer Deposition of Lead Halides: PbBr2 and PbCl2

Georgi Popov^{*†}, Charlotte Van Dijck[†], Laura Junkers[†], Goran Bačić[‡], Alexander Weiss[†], Miika Mattinen[†], Anton Vihervaara[†], Pasi Jalkanen[§], Kenichiro Mizohata[§], Jyrki Räisänen[§], Marianna Kemell[†], Markku Leskelä[†], Seán Barry[‡], Mikko Ritala[†]

† Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland

‡ Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada

§ Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki, Finland

Figure 1. (a) Vapor pressures of GaCl₃ (Brunetti et al. *J. Chem. Eng. Data* 2010, 55, 98–102) and volatile tetrahalides of tin and titanium (Perry's Chemical Engineers' Handbook 8^{ed}). (b) Growth per cycle values (GPCs) in the lead halide ALD processes as a function of temperature. Lead precursor is Pb(btsa)₂ and halide precursors are GaCl₃, TiBr₄ and SnI₄ respectively. (c) Bis[lead(II) *N*,*N*'-di-*tert*-butyl-1,1-dimethylsilanediamide] or (Pb(gem))₂. (d) Cross-section SEM image of a PbCl₂ film deposited at 85 °C. Crystal structures, photographs and SEM images of (e) PbCl₂, (f) PbBr₂ and (g) PbI₂ films. Films were deposited on 5 x 5 cm Si substrates. PbBr₂ and PbI₂ were deposited at 75 °C and PbCl₂ at 85 °C. The 2D structure of PbI₂ accounts for smaller GPC in the PbI₂ ALD process compared to PbBr₂ and PbCl₂ processes.