Supplemental Material

Figure 1: Study of Al₂O₃/SiO₂ multilayers for the Si surface passivation similar to those reported for MOSFETs [1]. The Figure shows the effect of ALD deposition temperature T_{dep} (left) and Al₂O₃ layer thickness t_{Al2O3} in the multilayer (right) on the Si surface passivation guality of the Al₂O₃/SiO₂ multilayers in terms of measured effective lifetime data, τ_{eff} , (a, b) as well as on the interface trap density at midgap, $D_{it,mid}$, (c, d) and the total effective density of fixed charges, Q_{tot} , (e, f) [2]. The results are shown for multilayers with single and triple multilayers ($t_{SiO2} = 2 \text{ nm}$) and are compared to references coated only with a single Al₂O₃ layer of 10 nm thickness. Note that τ_{eff} , $D_{\text{it,mid}}$ and Q_{tot} are shown for optimal post-deposition anneal temperatures (forming gas), which was 450°C for the samples deposited at 150 °C and 200 °C, and 650 °C for the samples deposited at 250 °C. The passivation quality of the multilayers is for some variations on a similar level as for the Al₂O₃ single layers but not significantly better. The main reason is that most multilayers have a lower Q_{tot} . We studied further voltage stress V_{stress} on the interface properties (not shown). We found that with increasing $V_{\rm stress}$, an increasing flat band voltage shift, $V_{\rm fb}$, is obtained indicating a modification of Q_{tot} . A systematic analysis of the influence of V_{stress} on Q_{tot} revealed that while Q_{tot} is increasing with increasing V_{stress} , D_{it} starts to decrease after too high V_{stress} , which is confirmed by decreasing τ_{eff} using bias-QSSPC measurements.

Reference Al₂O₃ (10 nm) SiO₂ (2 nm)_ Al₂O₂ (3 nm)c-Si (n-type) c-Si (n-type) c-Si (n-type) c-Si (n-type) w/o plasma 16000 Al₂O₃/SiO₂/Plasma Al₂O₃/Plasma/SiO₂ 14000 Al₂O₃/Plasma/SiO₂/Plasma τ_{eff} (µs) 12000 10000 8000 6000 P12 3 P12 3 42 7 7 O٩ O٦ Xr $\phi_{\mathcal{V}}$ \sim $\phi_{\mathcal{J}}$ 47 71 Plasma Plasma

Figure 2: Influence of different plasma treatments (H₂, N₂, H₂/N₂, O₂ or Ar, 10s each) either after each SiO₂ or Al₂O₃ deposition, or after both, on the Si surface passivation quality in terms of τ_{eff} for single multilayers (left) and triple multilayers (right). The first two data points on the right of each graph correspond to Al₂O₃ single layer and Al₂O₃/SiO₂ multilayer reference samples, respectively, which were deposited without any plasma treatment.

The results reveal that especially the H plasma after the SiO₂ deposition results in a substantially

improved surface passivation for the single multilayers (left), significantly better than that of the Al_2O_3 single layer references. In contrast, Al_2O_3 single layers do not show any beneficial effects if such plasma treatments were performed before or after the layer deposition (not shown). A detailed analysis with respect to the interface properties will be provided in the final paper.

References

- H. Kamata and K. Kita, "Design of Al2O3/SiO2 laminated stacks with multiple interface dipole layers to achieve large flatband voltage shifts of MOS capacitors," *Appl. Phys. Lett.*, vol. 110, no. 10, p. 102106, 2017, doi: 10.1063/1.4978223.
- [2] H. Patel, C. Reichel, A. Richter, P. Masuch, J. Benick, and S. W. Glunz, "Effective charge dynamics in Al2O3/SiO2 multilayer stacks and their influence on silicon surface passivation," *Appl. Surf. Sci.*, vol. 579, p. 152175, 2022, doi: 10.1016/j.apsusc.2021.152175.