SUPPLEMENTARY MATERIAL

Advanced wafer scale uniformity characterization method for conformal 3D thin films

Authors: <u>Mikko Utriainen</u>¹, Pasi Hyttinen¹, Feng Gao ^{1,2}, Ali Bider³, Kimmo Saastamoinen³, Heikki Rekola³, Riikka L. Puurunen⁴ and Oili M. E. Ylivaara²

¹ Chipmetrics Ltd, ² VTT Technical Research Center of Finland, ³ University of Eastern Finland, Institute of Photonics, ⁴ Aalto University, School of Chemical Engineering

Figure 1. Results of ALD Al_2O_3 (TMA+ H_2O) at 300C, 500 cycles, thickness average 47.2 nm (stdev 0.2 nm over wafer area) deposited onto PillarHallTM LHAR test chips placed on the Si carrier wafer.

Up-left: Optical microscope image of the LHAR test structure after removal of the roof membrane. **Up-right:** Modelled reflectivity from ALD Al_2O_3 coated silicon substrate with coating thicknesses ranging from 0 to 50 nm at wavelength range of 210 to 1200 nm. Dashed vertical lines separate the visible range observed with the optical microscope. Reflectivity was calculated for unpolarised light at direct incidence angle.

Down-left: Film penetration depth PD50% (*penetration depth in 50% of thickness*) calculation by optical microscope image analysis and from reflectometer line-scan reference measurement.

Down-right: Visualized conformality map in 150 mm silicon wafer by using PD50% values from the optical microscope image analyses of 7 PillarHall chips placed evenly on the carrier wafer.