

Figure 1: (a) Infrared absorbance change for a SiN_x (green) and SiO_2 (blue) surface after exposure to benzaldehyde at a substrate temperature of 70 °C. (b) Representative schematic of the SiN_x and SiO_2 surface after exposure to benzaldehyde showing extremely high selectivity in attachment to a SiN_x surface.

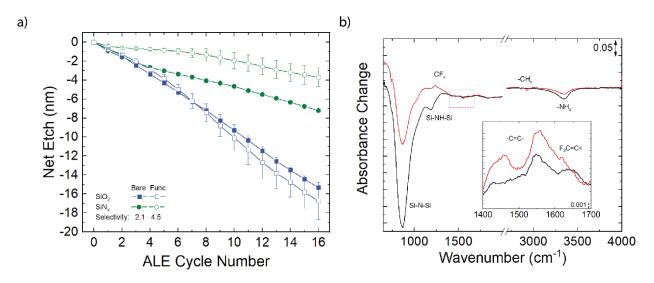


Figure 2: (a) Calculated net etch of SiO₂ and SiN_x surfaces as a function of ALE cycle number. The closed symbols (-•-) and (- \blacksquare -) represent the net etch for ALE on bare SiN_x and SiO₂, respectively. The open symbols (- \circ -) and (- \blacksquare -) represent the net etch for ALE on benzaldehyde exposed SiN_x and SiO₂, respectively. The legend also contains the calculated SiO₂:SiN_x etch selectivity for a target SiO₂ etch of ~15 nm. (b) Infrared absorbance change for the 16 ALE cycles on bare (black) and benzaldehyde functionalized (red) SiN_x referenced to the SiN_x surface immediately prior to the first ALE half-cycle. The inset shows an enhanced view of the 14000-1700 cm⁻¹ region which contains stretching vibrations from sp²-hybridized C with varying degrees of fluorination.