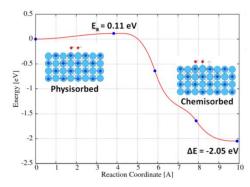

Improving the conductivity (<10⁻³ Ω cm) of HfN_x by ion energy control during plasma-assisted ALD


S. Karwal^{*†}, B. Karasulu[†], M.A. Verheijen^{†‡}, J-P. Niemelä[†], T. Faraz[†], W.M.M. Kessels^{$t\zeta$} and M. Creatore^{$t\zeta$}

[†]Department of Applied Physics, University of Technology Eindhoven, 5600MB, P.O. Box 513, Eindhoven, Netherlands

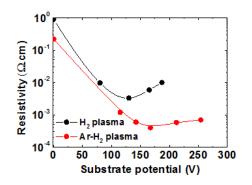

[‡]Philips Innovation Services, High Tech Campus 4, 5656 AE Eindhoven, The Netherlands ^ζSolliance, High Tech Campus 21, 5656AE, Eindhoven, Netherlands

Figure 1: (a, b) Deconvoluted Hf 4f XPS spectra for HfN_x films prepared at $T_s = 450^{\circ}$ C and at 0V and -130V substrate potential respectively with Hf(III) and Hf(IV) oxidation states (c) O 1s XPS spectra showing a decrease in the Hf-O peak upon increment in the substrate potential from 0 V to -187 V.

Figure 2: Example of an energy profile computed by DFT: It depicts that H_2O adsorption on HfN surface is kinetically and thermodynamically favoured, given the high reactivity of Hf(III) towards H_2O .

Figure 3: HfN_x resistivity (~70-80 nm) for a film prepared at $T_s = 450$ °C as a function of absolute value of the substrate potential. Results are given for two plasma gas compositions. These results clearly demonstrate the improvement of the film conductivity by ion energy control.