Unravelling The Role of ALD Al₂O₃ and TiO₂ Protective Coatings on Lithium-Ion Battery Electrodes (Supplementary information)

<u>Felix Mattelaer</u>¹, Mert Kurttepeli², Shaoren Deng¹, Daire J. Cott³, Philippe Vereecken³, Jolien Dendooven¹, Sara Bals², Christophe Detavernier¹

1 Ghent University, Dept. Solid State Sciences, CoCooN group, Ghent, Belgium (felix.mattelaer@ugent.be) 2 Department of Physics, Electron Microscopy for Materials Science (EMAT), University of Antwerp, Belgium 3 IMEC, Leuven, Belgium

Figure 1: (left) Electrochemical impedance of ultrathin ALD Al₂O₃ coatings on a thin-film rutile TiO₂ electrode (markers), with the equivalent circuit shown resulting in a good fit (lines). (**right**) The fitted coating impedance.

Figure 2: Rate capability of uncoated and ALD coated 100nm LiMn₂O₄ thin-film electrode in the 3.5-4.5V vs Li⁺/Li potential range.

Figure 3: (a) SEM image of 25 ALD cycles TiO₂ coated V₂O₅/CNTs cross-sectional view. HRTEM (b) and HAADF-STEM (c) image of a 25 ALD cycles TiO₂ coated V₂O₅/CNTs. (d-h) EDX elemental mapping reveals the conformality.

Figure 4: Capacity evolution and coulombic efficiency of the uncoated and coated $V_2O_5/CNTs$ over cycling at a C-rate of 2C. The inset demonstrates the extent of the vanadium dissolution.